Maybe number 4 could help.
5.972 × 10^24 kg
it is the weight of earth
hope it is helpful to you
Answer:
9241.6 W or 12.39318 hp
Explanation:
u = Initial velocity = 0
v = Final velocity
m = Mass
t = Time taken
Energy

Power

Converting to hp


The power developed by the cheetah is 9241.6 W or 12.39318 hp
Answer:
1000 N
Explanation:
First, we need to find the deceleration of the running back, which is given by:

where
v = 0 is his final velocity
u = 5 m/s is his initial velocity
t = 0.5 s is the time taken
Substituting, we have

And now we can calculate the force exerted on the running back, by using Newton's second law:

so, the magnitude of the force is 1000 N.