The answer is 333. put the 3 and the 2 in the correct spots. then multiply 8 and 2 which is 16 then 7 and 3 which is 21. then add which is 37. you would have to multiply 37 and 9 and you would get 333.
the assumption being that the endpoints are two continuous points in the pentagon, Check picture below.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[2-(-1)]^2+[3-4]^2}\implies d=\sqrt{(2+1)^2+(3-4)^2} \\\\\\ d=\sqrt{9+1}\implies d=\sqrt{10}~\hfill \stackrel{\stackrel{~\hfill \stackrel{\textit{5 sides}}{}}{\textit{perimeter of the pentagon}}}{5\sqrt{10}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%5B2-%28-1%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%282%2B1%29%5E2%2B%283-4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20d%3D%5Csqrt%7B10%7D~%5Chfill%20%5Cstackrel%7B%5Cstackrel%7B~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B5%20sides%7D%7D%7B%7D%7D%7B%5Ctextit%7Bperimeter%20of%20the%20pentagon%7D%7D%7D%7B5%5Csqrt%7B10%7D%7D)
Answer: z = 7
Step-by-step explanation:
Step 1: Subtract 4 from both sides
z + 4 - 4 = 11 -4
z = 7
4d = 1/3
d = 1/3/4
d = 1/12
Thus, c is the correct choice.
Answer:
The locations of E' and F' are E'(-2,0) and F'(0,1), and lines g and g' are parallel.
Step-by-step explanation:
I got it right on my test! :)