Answer:
0.52 L.
Explanation:
Let P be the initial pressure.
From the question given above, the following data were obtained:
Initial pressure (P1) = P
Initial volume (V1) = 1.04 L
Final pressure (P2) = double the initial pressure = 2P
Final volume (V2) =?
The new volume (V2) of the gas can be obtained by using the the Boyle's law equation as shown below:
P1V1 = P2V2
P × 1.04 = 2P × V2
1.04P = 2P × V2
Divide both side by 2P
V2 = 1.04P /2P
V2 = 0.52 L
Thus, the new volume of the gas is 0.52 L.
Answer:
8
Explanation:
From the question given above, the following data were obtained:
t–butyl ion = (CH₃)₃C⁺
Number of valence electron =?
The valence electron(s) talks about the combining power of an element or compound as the case may be.
Considering the t–butyl ion, (CH₃)₃C⁺ we can see that it has a charge of +1 indicating that it has given out 1 electron to attain the stable octet configuration which has a valence electrons of 8. Thus, the valence electron of t–butyl ion, (CH₃)₃C⁺ is 8
The answer for this one is a
The heat of solution is -51.8 kJ/mol
<h3>What is the heat of solution?</h3>
We know that in a calorimeter, there is no loss or gain of energy. It is a good example of a closed system.
Number of moles of KOH = 11.9-g/56 g/mol = 0.21 moles
Temperature rise = 26.0 ∘c
Mass of the water = 100.0 grams
Heat capacity = 4.184 j/g⋅°c
Then;
ΔH = mcθ
ΔH = 100g * 4.184 j/g⋅°c * 26.0 ∘c = 10.88 kJ
Heat of solution = -(10.88 kJ/ 0.21 moles) = -51.8 kJ/mol
Learn more about heat of solution:brainly.com/question/24243878
#SPJ1