Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Explanation:
It <em><u>provides an objective, standardized approach to conducting experiments</u></em> and, in doing so, improves their results. By using a standardized approach in their investigations, scientists can feel confident that they will stick to the facts and limit the influence of personal, preconceived notions.
I hope this helps you out!
<u>Answer:</u> The energy of one photon of the given light is 
<u>Explanation:</u>
To calculate the energy of one photon, we use Planck's equation, which is:

where,
= wavelength of light =
(Conversion factor:
)
h = Planck's constant = 
c = speed of light = 
Putting values in above equation, we get:

Hence, the energy of one photon of the given light is 
Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

Answer:
All three are present
Explanation:
Addition of 6 M HCl would form precipitates of all the three cations, since the chlorides of these cations are insoluble:
.
- Firstly, the solid produced is partially soluble in hot water. Remember that out of all the three solids, lead(II) choride is the most soluble. It would easily completely dissolve in hot water. This is how we separate it from the remaining precipitate. Therefore, we know that we have lead(II) cations present, as the two remaining chlorides are insoluble even at high temperatures.
- Secondly, addition of liquid ammonia would form a precipitate with silver:
; Silver hydroxide at higher temperatures decomposes into black silver oxide:
. - Thirdly, we also know we have
in the mixture, since addition of potassium chromate produces a yellow precipitate:
. The latter precipitate is yellow.