Can u repost with answer choices?
Answer:
Experimental group
Explanation:
i hopes this helps let me know if im wrong:)
Answer:
The sun would appear to move more slowly across Mercury's sky.
Explanation:
This is because, the time it takes to do one spin or revolution on Mercury is 176 days (which is its period), whereas, the time it takes to do one spin or revolution on the Earth is 1 day.
Since the angular speed ω = 2π/T where T = period
So on Mercury, T' = 176days = 176 days × 24 hr/day × 60 min/hr × 60 s/min = 15,206,400 s
So, ω' = 2π/T'
= 2π/15,206,400 s
= 4.132 × 10⁻⁷ rad/s
So on Earth, T" = 1 day = 1 day × 24 hr/day × 60 min/hr × 60 s/min = 86,400 s
So, ω" = 2π/T"
= 2π/86,400 s
= 7.272 × 10⁻⁵ rad/s
Since ω' = 4.132 × 10⁻⁷ rad/s << ω" = 7.272 × 10⁻⁵ rad/s, <u>the sun would appear to move more slowly across Mercury's sky.</u>
Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Answer:
Me too. What is this for? A Lab. You are missing some kind of key info bud.
Explanation: