1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
3 years ago
6

How many moles of hydrogen gas are produced when 3.8 moles of HCI are reacted? O 1.9 mol

Chemistry
1 answer:
igor_vitrenko [27]3 years ago
3 0
1.9 mol H2.
3.8 mol HCl * (1 mol H2 / 2 mol HCl) = 1.9 mol H2
You might be interested in
When a substance is entering a phase change, the gain or loss of heat is a result of?
sweet [91]

When a substance is entering a phase change, the gain or loss of heat is a result of energy gained or lost in forming or breaking intermolecular interaction.

The constant temperatures occur when a substance is undergoing a phase transition.  If heat is removed from a substance , such as in freezing and condensation , then the process is exothermic . In this instance , heat is decreasing the speed of the molecules causing then move slower.

In chemistry and thermodynamics, phase transitions (or phase changes) are the physical processes of transition between a state of a medium, identified by some parameters, and another one, with different values of the parameters.

Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, as well as plasma in rare cases.

For example, a phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change, often discontinuously, as a result of the change of external conditions, such as temperature, pressure, or others.

For example, a liquid may become gas upon heating to the boiling point, resulting in an abrupt change in volume. The measurement of the external conditions at which the transformation occurs is termed the phase transition. Phase transitions commonly occur in nature and are used today in many technologies.

Learn more about  phase change here :

brainly.com/question/12390797

#SPJ4

8 0
2 years ago
Write a letter to your friend describing your feelings after you left the school
fredd [130]
Dear friend,
How are you doing? I finally switched to my new school and it's been so hard adjusting. But I know I have a new chance at making new friends and memories. Also, I can learn new things, like interacting with new people and how to keep my anxiety low. I really miss us hanging out and how much we'd laugh and get in trouble at class. But i really hope to see you soon & that it hasn't gone terribly wrong for you since i left.
your friend,
name
8 0
3 years ago
When the chemicals iron sulfide (FeS) and hydrochloric acid (HCl) are combined, bubbles appear from the mixture. 1. Does the app
Fudgin [204]

The reaction of iron sulfide (FeS) with hydrochloric acid (HCl) results in the formation of ferrous chloride (FeCl2) and hydrogen sulfide (H2S) gas. The reaction can be shown as follows:

FeS (s) + HCl(aq) ---- FeCl2(s) + H2S(g)

The bubbles indicate the formation of H2S gas which is a chemical change. The formation of bubbles indicates this change as it suggests that the reactants are combing to form products i.e. it signals a chemical reaction.

8 0
3 years ago
Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction is C2H2(g) + 2H2(g) ⇌ C2H6(
sukhopar [10]

Answer:

-255.4 kJ

Explanation:

The free energy of a reversible reaction can be calculated by:

ΔG = (ΔG° + RTlnQ)*n

Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.

C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)

Q = pC₂H₆/[pC₂H₂ * (pH₂)²]

Q = 0.261/[8.58*(3.06)²]

Q = 3.2487x10⁻³

ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)

ΔG = -255.4 kJ

4 0
4 years ago
I need help with this assignment
yuradex [85]

The answers for the following sums is given below.

1.Pd_{2}H_{2}

2.C_{2} H_{6}

3.C_{2} H_{2} O_{2} Cl_{2}

4.C_{3}Cl_{3} N_{3}

5.Tl_{2 } C_{4} H_{4}O_{6}

6.C_{8}H_{8}

7. N_{2}O_{5}

8.P_{4}O_{6}

9.C_{4}H_{8}  O_{2}

Explanation:

1.Given:

        Molar mass=216.8g

Molecular formula=PdH_{2}

       we know;

Molecular formula=n(Empirical formula)

molecular weight of palladium(Pd)=106.4u

molecular weight of hydrogen(H)=1u

Molar mass of PdH_{2}:

Pd=106.4×1=106.4u

H=1×2=2

molar mass of PdH_{2}=106.4+2=108.4

n=\frac{216.8}{106.4}

<u><em>n=2</em></u>

Molecular formula=2(PdH_{2})

Molecular formula=Pd_{2}H_{2}

Therefore the molecular formula of the compound is Pd_{2}H_{2}

2. Given:

        Molar mass=30.0g

Molecular formula=CH_{3}

       we know;

Molecular formula = n (Empirical formula)

molecular weight of Carbon(C)=12.01u

molecular weight of hydrogen(H)=1u

Molar mass of CH_{3}:

C=12.01 × 1 = 12.01u

H=1 × 3 = 3u

molar mass of CH_{3}=12.01 + 3 =15.01u

n=\frac{30.0}{15.01}

<u><em>n=2</em></u>

Molecular formula=2(CH_{3})

Molecular formula=C_{2} H_{6}

Therefore the molecular formula of the compound is C_{2} H_{6}

3. Given:

        Molar mass=129g

Molecular formula=CHOCl

       we know;

Molecular formula = n (Empirical formula)

molecular weight of Carbon(C)=12.01u

molecular weight of hydrogen(H)=1u

molecular weight of oxygen(O)=16.00u

molecular weight of chlorie(Cl)=35.5u

Molar mass of CHOCl:

C=12.01 × 1 = 12.01u

H=1 × 1 = 1u

O=16.00×1=16.00u

Cl=35.5×1=35.5u

molar mass of CHOCl=12.01+1+16.00+35.5=64.5u

n=\frac{129}{64.5}

<u><em>n=2</em></u>

Molecular formula=2(CHOCl)

Molecular formula=C_{2} H_{2} O_{2} Cl_{2}

Therefore the molecular formula of the compound is C_{2} H_{2} O_{2} Cl_{2}

5. Given:

        Molar mass=577g

Molecular formula=TlC_{2} H_{2}O_{3}

       we know;

Molecular formula = n (Empirical formula)

molecular weight of Carbon(C)=12.01u

molecular weight of Thallium(Tl)=204.3u

molecular weight of hydrogen(H)=1u

molecular weight of oxygen(O)=16.00u

Molar mass of TlC_{2} H_{2}O_{3} :

C=12.01 × 2= 24.02u

Tl=204.3×1=204.3u

H=1×2=2u

O=16.00×3=48.00

molar mass of TlC_{2} H_{2}O_{3}=204.3+24.02+1+48.00=278.32u

n=\frac{577}{278.32}

<u><em>n=2</em></u>

Molecular formula=2 (TlC_{2} H_{2}O_{3})

Molecular formula=Tl_{2 } C_{4} H_{4}O_{6}

Therefore the molecular formula of the compound is Tl_{2 } C_{4} H_{4}O_{6}

4. Molar mass=184.5g

Molecular formula=CClN

       we know;

Molecular formula = n (Empirical formula)

molecular weight of Carbon(C)=12.01u

molecular weight of Nitrogen(N)=14u

molecular weight of chlorine(Cl)=35.5u

Molar mass of CClN:

C=12.01 × 1 = 12.01u

N=1×14=14U

Cl=35.5×1=35.5u

molar mass of CClN=12.01+14+35.5=61.5u

n=\frac{184.5}{61.5}

<u><em>n=3</em></u>

Molecular formula=3 (CClN)

Molecular formula=C_{3}Cl_{3} N_{3}

Therefore the molecular formula of the compound is C_{3}Cl_{3} N_{3}

6. For the table refer the attached file.

Simplest ratio of elements:

Carbon=8

Hydrogen=8

Empirical formula=C_{8}H_{8}

Molecular formula =C_{8}H_{8}

Molar mass of C_{8}H_{8}:

molecular weight of carbon=12.04u

molecular weight of hydrogen=1u

C=8×12.01=96.08u

H=1×8=8u

molar mass of C_{8}H_{8}=96.08+8=104.08u

n=104.08÷78.0

<em><u>n=1</u></em>

Molecular formula = n(Empirical formula)

Molecular formula = 1(C_{8}H_{8})

Molecular formula =C_{8}H_{8}

Therefore the molecular formula of a compound is C_{8}H_{8}

7. Given:

mass of oxide of nitrogen=108g

mass of nitrogen=4.02g

mass of oxygen=11.48g

moles of nitrogen=\frac{4.04}{14.01} = 0.289 moles

moles of oxygen=\frac{11.46}{15.999} =0.716 moles

We divide through by the lowest molar quantity to give an empirical formula  of N_{2} O{5}.

Now the molecular formula is multiple of the empirical formula.

So,

108 = n × (2×14.01 + 5×15.999)

Clearly,n=1, and the molecular formula is N_{2}O_{5}.

8.For the table refer the attached file.

Simplest ratio of elements:

Phosphorus=2

Oxygen=3

We know;

Empirical formula=P_{2} O_{3}

molecular formula= 2(Empirical formula)

Molecular formula =2(P_{2} O_{3})

Molecular formula =P_{4}O_{6}

Therefore the molecular formula of the compound is P_{4}O_{6}

9. For the table refer the attached file.

Simplest ratio of elements:

Carbon=2

Hydrogen=9

Oxygen=2

We know;

Empirical formula =C_{2} H_{4} O

Molecular formula = 2(Empirical formula)

Molecular formula =2(C_{2} H_{4} O)

Molecular formula =C_{4}H_{8}  O_{2}

Therefore the molecular formula of the compound is C_{4}H_{8}  O_{2}

4 0
3 years ago
Other questions:
  • Melamine (C3N3(NH2)3) is a component of many adhesives and resins and is manufactured in a two-step
    11·1 answer
  • A substance that permits the flow of electrons is a(n) .
    15·2 answers
  • The nucleus of an atom is
    11·2 answers
  • What are three observable changes that show a chemical reaction?
    6·1 answer
  • Consider the equations below. (1) Ca(s) + CO2(g) + 1 2 O2(g) → CaCO3(s) (2) 2Ca(s)+O2(g) → 2CaO(s) How should you manipulate the
    10·1 answer
  • The Law of Superposition allows us to determine:
    14·1 answer
  • What type of elements are in s-block
    14·1 answer
  • ☆Only need information for problem 3 but you need to know the information from problem 2 to get answer 3☆
    11·1 answer
  • I NEED HELP WITH BOTH QUESTIONS PLZZ!!!!!!!!
    5·2 answers
  • Sugar is...
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!