Answer:
<em>A solution containing 60 grams of nano3 completely dissolved in 50. Grams of water at 50°c is classified as being</em> <u>supersaturaded</u>
Explanation:
This question is about solubility.
Regarding solubility, the solutions may be classified as:
- Unsaturated: the concentration is below the maximum concentration permited at the given temperature.
- Saturated: the concentration is the maximum permitted at the given temperature, under normal conditions.
- Supersaturated: the concentration has overcome the maximum permitted at the given temperature. This is possible only under special conditions and is a very unstable state.
Each substance has its own, unique solubility properties. So, in order to tell the state of the solution you need to compare with either solubility tables, or solubility curves; or run you own experiments.
- In internet you can find the solubility curve of NaNO₃ showing the solubility for a wide range of temperatures.
- In such curve the solubility of NaNO₃ at 50°C is about 115 g of NaNO₃ per 100 g of water.
- Hence, do the proportion to determine the amount of solute that can be dissolved in 50 grams of water at 50°CÑ
115 g NaNO₃ / 100 g H₂O = x / 50 g H₂O ⇒ x = 57.5 g NaNO₃
- <u>Conclusion</u>: 50 grams of water can contain 57.5 g of NaNO₃ dissolved; so, <em>a solution containing 60 g of NaNO₃ completely dissolved in 50 grams of water is supersaturated.</em>
<em />
Answer: the essential parts of a flower
Explanation:
are engaged with seed creation. In the event that a blossom contains both useful stamens and pistils, it is known as an ideal bloom, regardless of whether it doesn't contain petals and sepals. On the off chance that either stamens or pistils are deficient with regards to, the blossom is called imperfect.
Answer:
252.68 K or -20.46 °C
Explanation:
According to Gay-Lussac's Law, "Pressure and Temperature at given volume are directly proportional to each other".
Mathematically,
P₁ / T₁ = P₂ / T₂ ---- (1)
Data Given:
P₁ = 30.7 kPa
T₁ = 0.00 °C = 273.15 K
P₂ = 28.4 kPa
T₂ = <u>???</u>
Solving equation for T₂,
T₂ = P₂ T₁ / P₁
Putting values,
T₂ = 28.4 kPa × 273.15 K / 30.7 kPa
T₂ = 252.68 K or -20.46 °C
Answer:
light energy to convert carbon dioxide and water into glucose and oxygen gas. Each molecule of glucose essentially “stores” up to 38 molecules of ATP which can be broken down and used during other cellular reactions.
Explanation:
A lot of cooking involves chemistry and is essentially a series of chemical reactions. Knowing about this kitchen chemistry can help you to understand much more about what’s happening – and why your recipes sometimes go wrong.Bananas turning brown is kitchen science.Why curry is hot uses chemical formulas.What happenes when meat cooks involves chemical formulas.Why popcorn pops inovopves chemical formulas.And,why honey is good for sore throats involves chemical formulas.