The volume of chlorine molecules produced at STP would be 96 dm³.
<h3>Stoichiometric problem</h3>
Sodium chloride ionizes during electrolysis to produce sodium and chlorine ions as follows:

This means that 1 mole of sodium chloride will produce 1 mole of sodium ion and 1 mole of chlorine ion respectively.
Recall that: mole = mass/molar mass
Hence, 234 g of sodium chloride will give:
234/58.44 = 4.00 moles.
Thus, the equivalent number of moles of chlorine produced by 234 g of sodium chloride will be 4 moles.
Recall that:
1 mole of every gas at Standard Temperature and Pressure = 24 Liters.
Hence:
4 moles of chlorine = 4 x 24 = 96 Liters or 96 dm³.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
Concentration of dissolved nitrogen = 5.2 × 10⁻⁴ mol/L
Explanation:
More the pressure of the gas, more will be its solubility.
So, for two different pressure, the relation between them is shown below as:-
Given ,
P₁ = 1 atm
P₂ = 0.76 atm
C₁ = 6.8 × 10⁻⁴ mol/L
C₂ = ?
Using above equation as:
<u>Concentration of dissolved nitrogen = 5.2 × 10⁻⁴ mol/L</u>
Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
The answer is that the pilot was tired of life and committed suicide with hundreds of passengers.
Answer:
Around 450 B.C.
Explanation:
The idea was forgotten until the 1800 when John Dalton re-introduced the atom.