Since the question manages to include moles, pressure, volume, and temperature, then it is evident that in order to find the answer we will have to use the Ideal Gas Equation: PV = nRT (where P = pressure; V = volume; n = number of moles; R = the Universal Constant [0.082 L·atm/mol·K]; and temperature.
First, in order to work out the questions, there is a need to convert the volume to Litres and the temperature to Kelvin based on the equation:
250 mL = 0.250 L
58 °C = 331 K
Also, based on the equation P = nRT ÷ V
⇒ P = (2.48 mol)(0.082 L · atm/mol · K)(331 K) ÷ 0.250 L
⇒ P = (67.31 L · atm) ÷ 0.250 L
⇒ P = 269.25 atm
Thus the pressure exerted by the gas in the container is 269.25 atm.
Answer:
The volume will be 89.6875 ml
Explanation:
So to count this we will use a single proportion.
0.0640 mol - 1000 ml
5.74×10−3 mol - x ml
x ml=5.74×10−3 mol*1000 ml/0.0640 mol=89.6875 ml
Answer:
because a fruit holds the seeds it needs to reproduce and continue living.
Answer:
Solution A is 1,000 times more acidic than Sol. B
Explanation:
for pH values we use scientific notation:
-log10 c (where c is the hydrogen ion concentration) is used to notate pH value (think of it as a unit)
ie:
10^-2 is sol A 10^-5 is sol B
5-2 is 3
10^-3 = 1000
there's a diff of 1,000 between the solutions.
Answer:A
Explanation:
The melting points of solids depend in the relative sizes of ions in the ionic lattice. The smaller the relative sizes of the ions, the higher the lattice energy and the stronger the lattice hence higher melting point. Comparing relative ionic sizes, fluoride ion is lesser in size than chloride ion hence NaF has a higher melting point than NaCl.