<h2>
Answer: </h2>
The velocity of a satellite describing a circular orbit is <u>constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting
the radius of the orbit (measured from the center of the planet to the satellite).
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. I<u>t depends on the mass of the massive body.</u>
In addition, this orbital speed is constant because at all times <u>both the kinetic energy and the potential remain constant</u> in a circular (closed) orbit.
Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2