The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
6. Drop to one quarter of its original value
Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
Answer:
3.88 * 10^(-15) J
Explanation:
We know that the Potential energy of the electron at the beginning of its motion is equal to the Kinetic energy at the end of its motion, when it reaches the plates.
First, we get the potential and potential energy:
Electric potential = E * r
E = electric field
r = distance between plates
Potential = 2.2 * 10^6 * 0.011
= 2.42 * 10^4 V
The relationship between electric potential and potential energy is:
P. E. = q*V
q = charge of electron = 1.602 * 10^(-19) C
P. E. = 2.42 * 10^4 * 1.602 * 10^(-19)
P. E. = 3.88 * 10^(-15) J
Barium cation has +2 charge and oxide anion has −2 charge