Power = work / time = 8000J / 20s = 400W
Answer:
Magnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Hope this helps you! :)
The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Answer:
https://gml.noaa.gov/education/info_activities/pdfs/LA_radiation.pdf
Explanation:
Answer:
Explanation:
given
T = 3months = 7.9 × 10⁶s
orbital speed = 88 × 10³m/s
V= 2πr÷T
∴ r = (V×T) ÷ 2π
r = (88km × 7.9 × 10⁶s) ÷ 2π
r = 1.10 × 10⁸km
using kepler's 3rd law
mass of both stars = (seperation diatance)³/(orbital speed)²
M₁ + M₂ = (2r)³/(
year)²
= (1.06 × 10²⁵)/(6.2×10¹³)
1.71×10¹²kg
since M₁ = M₂ =1.71×10¹²kg ÷ 2
M₁ = M₂ = 8.55×10¹¹kg