I’d think the answer would be C. i’m just kinda guessing but my thought process is this (as simply as i can put it because physics is confusing):
so for example say you throw a ball across a flat surface. inertia is what keeps the ball rolling straight in a line, so unless you were to maybe put your hand in front of the ball or something, it would just go straight forever.
this is what happens with the planets. they go in a straight line, but since there’s gravity, the planets are also being pulled towards the sun. so gravity and inertia are why the planets orbit in the circle pattern they do. so when we remove inertia, we’re removing the state in which the planets keep going straight while being pulled towards a center point (the sun). this causes gravity to be the only factor in the planets orbiting. so that being said, the planets would just be pulled towards the sun. :)
Answer:
c20800
Explanation:
go to bear khana bro your book looks cheap go and study in durbar kanda school and take somee cash and do ash ah boy
Well, you need no look further than the word "terrestrial" If you notice the beginning of the word you notice that it consists mostly of the word "terra" Terra by definition is just land. Due to the solid land of these 4 planets, they're called terrestrial planets, the other 4 aren't made of land but of gas which is why they aren't classified as terrestrial planets.
In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.
<h3>What are gravitational waves?</h3>
A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.
In conclusion, the merger of two black holes is the first direct detection of gravitational waves.
Read more about Wave
brainly.com/question/23271222
#SPJ1
Answer:
didn't understand your question