Answer:

Explanation:
Assuming the light takes essentially no time to reach you, the distance at which the lightning occurred can be calculated by multiplying the speed of sound by the time it takes to hear the thunder:

Explanation:
The mass written on the periodic table is an average atomic mass taken from all known isotopes of an element. This average is a weighted average, meaning the isotope's relative abundance changes its impact on the final average. The reason this is done is because there is no set mass for an element.
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>