<u><em>Answer:</em></u>
<u><em>god knows.</em></u>
Explanation:
If the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
Doppler effect states that, if a person is standing still and a source ( sound / light ) is moving towards him, the frequency of the wave emitted from the object will increase and if the source ( sound / light ) is away from him, the frequency of the wave emitted from the object will decrease.
So, if the light from the sun has higher frequencies from one side of the sun than from the other side, it means that the Sun is rotating. The higher frequencies points are the points that rotating towards Earth and lower frequencies points are the points that rotating away from Earth.
Therefore, if the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
To know more about Doppler Effect
brainly.com/question/15318474
#SPJ1
In both magnitude and direction since acceleration is a vector quantity
The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1