Answer:
D
Step-by-step explanation:
So you start with $2.65 and a variable y. What we will do is work without the dollar and keep it for the end as it quite disturbs and work our way while keeping the y. So first we have 2.65. Now it rose by y so. The price = 2.65 + y. Then it dropped by 0.15. So 2.65 + y - 0.15. Here you see we have like terms so we reduce and get 2.50 + y. Now it rose by 0.05. So 2.50 + y + 0.05. Again, like terms, reduce. 2.55 + y. There you go with the answer.
The correct answer is: [D]: " 7.2 units" .
_______________________________________________________
Explanation:
________________________________________________________
Use the Pythagorean theorem:
a² + b² = c² ;
in which: "6 units" and "4 units" equal the lengths of the right angle (formed by the rectangle); and "c" is the length of the diagonal of the rectangle, or the "hypotenuse", of the right triangle formed by the rectangle; We wish to solve for "c" ;
_______________________________________________
6² + 4² = c² ; Solve for "c" ;
↔ c² = 6² + 4² ;
= (6*6) + (4*4) ;
= 36 + 16 ;
= 52 ;
c² = 52 ;
Take the "positive square root" of each side of the equation; to isolate "c" on one side of the equation; and to solve for "c" ;
√(c²) = √52 ;
c = √52 ;
At this point, we know the 7² = 49 ; 8² = 64 ; so, the answer is somewhere between "7" and "8" ; yet closer to "7" ; so among the answer choices given;
The correct answer is: [D]: " 7.2 units" .
_________________________________________
However, let use a calculator:
c = √52 = 7.2111025509279786 ; which rounds to "7.2" ;
which corresponds to:
___________________________________________
Answer choice: [C]: " 7.2 units" .
___________________________________________
Answer:
the answer is 30 different ways
Step-by-step explanation:
To do this we need to find the factors of 60 these are:
1 and 60
2 and 30
3 and 20
4 and 15
5 and 12
6 and 10
There is 1 pair that have a difference of 7 and that is 5 and 12
Answer:
3.9 or less
Step-by-step explanation:
This is because 4 times 7 is equal to 28, so it has to be less than that!