<u>Answer:</u> The final temperature of the system is 14.60°C
<u>Explanation:</u>
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of aluminium = 25.00 g
= mass of water = 100 g
= final temperature = ?°C
= initial temperature of aluminium = 100°C
= initial temperature of water = 10°C
= specific heat of aluminium = 0.900 J/g°C
= specific heat of water= 4.18 J/g°C
Putting values in equation 1, we get:
![25\times 0.900\times (T_{final}-100)=-[100\times 4.18\times (T_{final}-10)]](https://tex.z-dn.net/?f=25%5Ctimes%200.900%5Ctimes%20%28T_%7Bfinal%7D-100%29%3D-%5B100%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-10%29%5D)

Hence, the final temperature of the system is 14.60°C
Atoms 'like' to have 8 valence electrones. sodium has one electron 'in excess' and chlorine 'lacks' in one. so they just exchange :) both are happy. then the ionic bond is formed because chlorine is now charged negative (additional electron) and sodium is charged positive (gave up one electrone) - the opposite charges cause electrostatic pull. many atoms, many bonds and thats how salt is built.
Answer:
Aluminium
Explanation:
Aluminium is the only atom that has 13 electron
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.
Answer:
Explanation:
This is a skeleton problem because the reacting species are not given. We do not have any information about the metal and non-metal reacting. Let us give a run down on how to solve this kind of problem. I hope you find it useful.
Firstly, establish the reaction equation. This will contain the reactants and products. The equation must be balanced in order to comply with the law of conservation of matter.
Secondly, solve from the known to the unknown specie. The known is the one which we can accurately determine the number of moles from. Using the number of moles of the known, we can find the moles of the unknown.
To find the number of moles;
Number of moles = 
molar mass is the sum of the atomic masses of the given compound whose mass we know.
mass = 5g
Thirdly; compared the number of moles of the known to the unknown using relationships and ratios between the two of them. F
For example, if :
2 mole of known gives 1 moles of unknown
solved mole of the known will give
moles of unknown
Lastly:
Now use this mole to find the mass of the unknown;
Mass of unknown = number of moles of unknown x molar mass