1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
4 years ago
11

Calculate the work done in compressing adiabatically 3kg of helium (He) to one fifth of its original volume if it is initially a

t 13°C. Find the change in internal energy of the gas resulting from the compression. (cp/cv for monatomic gases is 1.667; gas constant for helium is 2079 K^-1 kg^-1)
Physics
1 answer:
Alex_Xolod [135]4 years ago
4 0

Answer:

Work done,w=5.12\times10^{6}\ \rm J

change in internal Energy ,\Delta U=5.12\times10^6\ \rm J

Explanation:

Given:

  • Mass of helium gas m=3\ \rm kg
  • initial temperature T_i=286\ \rm K

Since It is given that the process is adiabatic process it means that there is no exchange of heat between the system and surroundings

T_iV_i^{\gamma -1}=T_fV_f^{\gamma -1}\\\\286\times V_i^{\gamma -1}=T_f \left( \dfrac{V_i}{5} \right )^{\gamma -1}\\T_f=840.76\ \rm K

Let n be the number of moles of Helium given by

n=\dfrac{m}{M}\\n=\dfrac{3\times10^3}{4}\\n=0.75\times10^3

Work done in Adiabatic process

Let W be the work done

W=\dfrac{nR(T_1-T_2)}{\gamma-1}\\W=\dfrac{0.75\times10^3\times8.314(286-840.76)}{1.67-1}\\W=-5.12\times 10^6\ \rm J

The Internal Energy change in any Process is given by

Let \Delta U be the change in internal Energy

\Delta U=nC_p\Delta T\\\Delta U=0.75\times10^3\times1.5R\times(840.76-286)\\\Delta U=5.12\times10^6\ \rm J

You might be interested in
In a chart the independent variable goes on the ___________. Question 5 options: left right middle
I am Lyosha [343]
The answer i think is left

6 0
3 years ago
Read 2 more answers
A cyclist is travelling at 4.0 m/s. She speeds up to 16 m/s in a time of 5.6 s. Calculate her acceleration.​
adell [148]

Answer:

Initial velocity, u=15m/s

Initial velocity, u=15m/sFinal velocity, v=0m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18m

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15)

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36a

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa=

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s 2 .

5 0
2 years ago
Read 2 more answers
A basketball player jumps 76cm to get a rebound. How much time does he spend in the top 15cm of the jump (ascent and descent)?
vesna_86 [32]

Answer:

The time for final 15 cm of the jump equals 0.1423 seconds.

Explanation:

The initial velocity required by the basketball player to be able to jump 76 cm can be found using the third equation of kinematics as

v^2=u^2+2as

where

'v' is the final velocity of the player

'u' is the initial velocity of the player

'a' is acceleration due to gravity

's' is the height the player jumps

Since the final velocity at the maximum height should be 0 thus applying the values in the above equation we get

0^2=u^2-2\times 9.81\times 0.76\\\\\therefore u=\sqrt{2\times 9.81\times 0.76}=3.86m/s

Now the veocity of the palyer after he cover'sthe initial 61 cm of his journey can be similarly found as

v^{2}=3.86^2-2\times 9.81\times 0.66\\\\\therefore v=\sqrt{3.86^2-2\times 9.81\times 0.66}=1.3966m/s

Thus the time for the final 15 cm of the jump can be found by the first equation of kinematics as

v=u+at

where symbols have the usual meaning

Applying the given values we get

t=\frac{v-u}{g}\\\\t=\frac{0-1.3966}{-9.81}=0.1423seconds

4 0
3 years ago
In a tug of war, when one team is pulling with a force of 85 N and the other 40 N, what is the net
olya-2409 [2.1K]
85 N - 40 N = 45 N
And depending on direction the greater force is being pulled towards
4 0
3 years ago
The formula for distance divided by time
azamat
It would be:  Speed = Distance / Time
4 0
3 years ago
Other questions:
  • A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184 J/g K) at initial temperatur
    7·1 answer
  • Air moves in and out of the lungs through a set of tubes that make up the airways.
    7·2 answers
  • Natural satellites that rotate around other larger celestial bodies are called
    14·1 answer
  • The diagram below illustrates the law of reflection.
    15·1 answer
  • What kind of system is generally composed of a fluid system to move the heat from the collector to its point of usage and a rese
    12·1 answer
  • For the oscillating bob of a pendulum, kinetic energy is at its minimum at the maximum height. Which statement is true, accordin
    12·1 answer
  • How much gravitational potential energy has a boy whose mass is 50 kg and
    12·1 answer
  • Which force can either repel or attract objects?
    10·2 answers
  • Like surface water and groundwater, glaciers shape the land through erosion and deposition. Fill in the blanks to complete each
    13·2 answers
  • PLEASE PLEASE PLEASE HELP ME!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!