Answer:
82.0343 g/mol
Explanation:
Count each element and the number of atoms for each element. Add them all together. Use the periodic table.
The first order rate law has the form: -d[A]/dt = k[A] where, A refers to cyclopropane. We integrate this expression in order to arrive at an equation that expresses concentration as a function of time. After integration, the first order rate equation becomes:
ln [A] = -kt + ln [A]_o, where,
k is the rate constant
t is the time of the reaction
[A] is the concentration of the species at the given time
[A]_o is the initial concentration of the species
For this problem, we simply substitute the known values to the equation as in:
ln[A] = -(6.7 x 10⁻⁴ s⁻¹)(644 s) + ln (1.33 M)
We then determine that the final concentration of cyclopropane after 644 s is 0.86 M.
No, They need something to hold on to, such as dirt
Here first we will identify the number of significant figures in the given two dimensions
2.3mm : there are two significant numbers
8.00mm: there are three significant numbers
so we will report the answer to minimum number of significant number , which is two
the answer is 18.4
We will report it to be 18 mm^2
Here we have to get the product between the reaction of butane-1-amine with methyl iodide (CH₃I).
The reaction between 1 mole of butan-1-amine and 1 mole of methyl iodide produces Methyl-butamine which is a secondary amine.
However, In presence of 2 moles of methyl iodide the reaction proceed to N, N-di-methylbutamine. The reaction is shown in the figure.
This is one of the effective reaction method to generate secondary and tertiary amine from primary amine.
The primary amine reacts with alkyl iodide to form secondary to tertiary amine. The final product depends upon the quantity of the alkyl iodide present in the reaction.