Stoichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag
∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
To calculate for the volume, we need a relation to relate the number of moles (n), pressure (P), and temperature (T) with volume (V). For simplification, we assume the gas is an ideal gas. So, we use PV=nRT.
PV = nRT where R is the universal gas constant
V = nRT / P
V = 65.5 ( 0.08205 ) (273.15 + 50.30) / 9.15
V = 189.98 L
Answer:
Fundamentally, chemistry is the study of matter and change. The way that chemists study matter and change and the types of systems that are studied varies dramatically. Traditionally, chemistry has been broken into five main subdisciplines: Organic, Analytical, Physical, Inorganic, and Biochemistry.
hope this helps :)
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
To calculate the amount of heat absorbed or released, we use the following equation:
.....(1)
where, q = amount of heat absorbed or released.
m = mass of the substance
c = heat capacity of water = 4.186 J/g ° C
= Change in temperature
We are given:
![m=30g\\\Delta T=[40-0]^oC=40^oC\\q=?J](https://tex.z-dn.net/?f=m%3D30g%5C%5C%5CDelta%20T%3D%5B40-0%5D%5EoC%3D40%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 5023.2 J
We are given:
![m=40g\\\Delta T=[40-30]^oC=10^oC\\q=?J](https://tex.z-dn.net/?f=m%3D40g%5C%5C%5CDelta%20T%3D%5B40-30%5D%5EoC%3D10%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 1674.4 J
Heat gained by Trial 1 than trial 2 = 
Hence, the amount of heat gained in Trial 1 about 3347 J more than the heat released in Trial 2.
Thus, the correct answer is Option b.
Explanation:
ᗯᕼᗩT ᑕOᑎᑕᗴᑭT ᗩᖇᗴ ᑌ TᗩᑭKIᑎᘜ ᗩᗷOᑌT......