Answer:
Yes
Step-by-step explanation:
Yes, even tho' it has only one non-zero term. x is a positive integer power of x, which is a requirement for polynomials.
Answer:
7
Step-by-step explanation:
pictomath lol
20(1+3)
The greatest common factor between the two numbers is 20, because both numbers are divisible by 20. It cannot be any higher because 20 is one of the numbers itself. You divide this out of both numbers and put it outside the function with the use of parenthesis.
<span><span> y2(q-4)-c(q-4)</span> </span>Final result :<span> (q - 4) • (y2 - c)
</span>
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> ((y2) • (q - 4)) - c • (q - 4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span> y2 • (q - 4) - c • (q - 4)
</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out q-4
After pulling out, we are left with :
(q-4) • (<span> y2</span> * 1 +( c * (-1) ))
Trying to factor as a Difference of Squares :
<span> 3.2 </span> Factoring: <span> y2-c</span>
Theory : A difference of two perfect squares, <span> A2 - B2 </span>can be factored into <span> (A+B) • (A-B)
</span>Proof :<span> (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 <span>- AB + AB </span>- B2 =
<span> A2 - B2</span>
</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication.
Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.
Check : <span> y2 </span>is the square of <span> y1 </span>
Check :<span> <span> c1 </span> is not a square !!
</span>Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :<span> (q - 4) • (y2 - c)
</span><span>
</span>