Answer:
15 units
Step-by-step explanation:
K(8, 6) and J(-4, -3)
Distance between 2 points

Thus using the formula above,
distance between points J and K
![= \sqrt{ {[8- (-4)]}^{2} + {[6- (-3)]}^{2} } \\ = \sqrt{ {12}^{2} + {9}^{2} } \\ = \sqrt{225} \\ = 15 \: units](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%7B%20%7B%5B8-%20%28-4%29%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B%5B6-%20%28-3%29%5D%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B%20%7B12%7D%5E%7B2%7D%20%20%2B%20%20%7B9%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B225%7D%20%20%5C%5C%20%20%3D%2015%20%5C%3A%20units)
The length of segment BC can be determined using the distance formula, wherein, d = sqrt[(X_2 - X_1)^2 + (Y_2 - Y_1)^2]. The variable d represent the distance between the two points while X_1, Y_1 and X_2, Y_2 represent points 1 and 2, respectively. Plugging in the coordinates of the points B(-3,-2) and C(0,2) into the equation, we get the length of segment BC equal to 5.
The domain of a function f(x)/m(x) = 1/√x(x² - 4) is (0, ∞) - {0, 2, -2} for other function is shown in the solution.
<h3>What is a function?</h3>
It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
We have:
f(x) = 1/√x
m(x) = x² - 4
Domain of f(x)/m(x):
f(x)/m(x) = (1/√x)/(x² - 4)
f(x)/m(x) = 1/√x(x² - 4)
The denominator cannot be zero:
√x(x² - 4) ≠ 0
x(x - 2)(x+2) ≠ 0
x ≠ 0, 2, -2
and x > 0
Domain of f(x)/m(x) is: (0, ∞) - {0, 2, -2} or 
Domain of f(m(x)):
f(m(x)) = 1/√(x² - 4)
x² - 4 > 0
Domain: 
Domain of m(f(x)):
= ((1/√x)² - 4)
Domain: 
Thus, the domain of a function f(x)/m(x) = 1/√x(x² - 4) is (0, ∞) - {0, 2, -2} for other function is shown in the solution.
Learn more about the function here:
brainly.com/question/5245372
#SPJ1
Divide 25 by 4 and you get 6 with a remainder of 1. That remainder of 1 can go over 4 to create the final answer of 6 and 1/4.
<em><u>Explore Motors dealership has R7 million to spend and wants to buy equal numbers of the entry.</u></em>