Explanation:
When Joe works alone, the total number of words he typed can be given by:
Total words = (40 words per minute) x (60 minutes per hour) x (2.5 hours)
Total words = 6000 words
Now, when Joe and Mark work together, let 'y' be the number of hours for which they both work simultaneously:
Total words = Words Typed by Joe + Words Typed by Mark
6000 = {(40 words per minute) x (60 minutes per hours) x (y hours)} + {(20 words per minute) x (60 minutes per hours) x (y hours)}
6000 = 2400y + 1200y = 3600y
y = 1.67 hours = 1 hour and 40 minutes
Thus, working together simultaneously, Joe and Mark will take 1 hour and 40 minutes to complete the report.
Answer:
5.096*10^-8
Explanation:
Given that
The average value of the electromagnetic wave is 310 mW/m²
To find the maximum value of the magnetic field the wave is closest to, we say
Emax = √Erms
Emax = √[(2 * 0.310 * 3*10^8 * 4π*10^-7)]
Emax = √233.7648
Emax = 15.289
Now, with our value of maximum electromagnetic wave gotten, we divide it by speed of light to get our final answer
15.289 / (3*10^8) = 5.096*10^-8 T
Suffice to say, The maximum value of the magnetic field in the wave is closest to 5.096*10^-8
The formula we need to use is displacement.
, where xf is final position and xi is initial position.
We report the final position of 5 and the displacement of 2 so the formula is now:
.
So the initial position of truck A is 3.
Hope this helps.
r3t40
Answer:
P₁- P₂ = 91.1 10³ Pa
Explanation:
For this exercise we will use Bernoulli's equation, where point 1 is at the bottom of the house and point 2 on the second floor
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
P1-P2 = ½ ρ (v₂² - v₁²) + ρ g (y₂-y₁)
In the exercise they give us the speeds and the height of the turbid, so we can calculate the pressure difference
For heights let's set a reference system on the ground floor of the house, so we have 5m for the second floor and an entrance at -2m
P₁-P₂ = ½ 1.0 10³ (7² - 2²) + 1.0 10³ 9.8 (5 + 2)
P₁-P₂ = 22.5 10³ + 68.6 10³
P₁- P₂ = 91.1 10³ Pa