1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksAgata [21]
3 years ago
5

Pls Help Me im in K12 and im having a hard time on this question bc i don't get it

Mathematics
1 answer:
Nady [450]3 years ago
6 0

Answer:

The approximated value of JK is 10.6 cm answer (A)

Step-by-step explanation:

∵ JI // KH // LG

∵ XI and XJ are two transversal

∴ \frac{LK}{GH}=\frac{KJ}{HI}

∵ LK = 18 cm , GH = 22 cm and HI = 13 cm

∴ \frac{18}{22}=\frac{KJ}{13}

∴ KJ = (13)(18) ÷ 22 = 10.6363 cm

∴ The approximated value of JK is 10.6 cm

You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
I really need help with these two above.
Strike441 [17]
6) y=-1/3x+5
7) y= x+5
8 0
3 years ago
Find the point of intersection between the ray y = -5/12x when x &lt; 0, and the unit circle.
allsm [11]
Answer is 7 to this question
6 0
3 years ago
1) radius = 2 feet height = 4 feet
LekaFEV [45]

Answer:

R=2

Step-by-step explanation:

2x2=4

8 0
3 years ago
Read 2 more answers
What is the measure of angle 3?
____ [38]

Answer:

c.45 degrees

Step-by-step explanation:

90 -180= 90

90÷2=45

8 0
3 years ago
Read 2 more answers
Other questions:
  • Two thirds of a number, decreased by thirty six, is at most twenty two. Find the number.
    11·1 answer
  • Integral 0 to infinity of e^-xcosxdx
    13·1 answer
  • The median of a data set 8, 21, 17, and 13 is 15. If 17 is changed to 18, what will be the new median? a. 15.5 c. 50 b. 17.5 d.
    5·1 answer
  • This is my third time posting this bc i kept getting the wrong answer please help me
    10·1 answer
  • Find the area of square if the length of its diagonal is 18 cm​
    10·1 answer
  • If a and B are angles which tan a= 3/4 and cos B= 8/17. Determine the exact value of cos(a-B)
    11·1 answer
  • Scientific notation<br> 13.4 x 10^2
    11·2 answers
  • whats the constant of proportionality of this table? and also write a direct variation equation for the table after you find the
    8·2 answers
  • Q: Solve by the Extraction of Roots method: -<br><br> -5x²=-50
    14·1 answer
  • PLEASEEE HELP ME TO SOLVEE THISS
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!