1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
6

An article includes the accompanying data on compression strength (lb) for a sample of 12-oz aluminum cans filled with strawberr

y drink and another sample filled with cola.Beverage Sample Sample Sample Size Mean SDStrawberry Drink 10 537 22Cola 10 559 17Does the data suggest that the extra carbonation of cola results in a higher average compression strength? Base your answer on a P-value.State the relevant hypotheses. (Use \mu1 for the strawberry drink and \mu2 for the cola.)H0: \mu1 - \mu2 = 0 Ha: \mu1 - \mu2 > 0H0: \mu1 - \mu2 = 0 Ha: \mu1 - \mu2 < 0 H0: \mu1 - \mu2 = 0 Ha: \mu1 - \mu2\geq 0H0: \mu1 - \mu2 = 0 Ha: \mu1 - \mu2\neq 0Compute the test statistic value and find the P-value. (Round your test statistic to three decimal places and your P-value to four decimal places.)t = ___P-value = ___State the conclusion in the problem context. (Use \alpha = 0.05.)Reject H0. The data suggests that cola has a higher average compression strength than the strawberry drink.Reject H0. The data does not suggest that cola has a higher average compression strength than the strawberry drink. Fail to reject H0. The data suggests that cola has a higher average compression strength than the strawberry drink.Fail to reject H0. The data does not suggest that cola has a higher average compression strength than the strawberry drink.What assumptions are necessary for your analysis?The distributions of compression strengths are approximately normal.The distributions of compression strengths have equal means. The distributions of compression strengths are the same.The distributions of compression strengths have equal variances.

Mathematics
1 answer:
Sliva [168]3 years ago
7 0

Answer:

A) Option B is correct.

H₀: μ₁ = μ₂

Hₐ: μ₁ - μ₂ < 0

B) t = -2.502

p-value = 0.0112

C) Option A is correct.

Reject H₀. The data suggests that cola has a higher average compression strength than the strawberry drink.

D) Option A is correct.

The distributions of compression strengths are approximately normal.

Step-by-step explanation:

The complete Question is presented in the two attached images to this answer.

A) To perform this test we first define the null and alternative hypothesis.

The null hypothesis plays the devil's advocate and usually takes the form of the opposite of the theory to be tested. It usually contains the signs =, ≤ and ≥ depending on the directions of the test.

While, the alternative hypothesis usually confirms the the theory being tested by the experimental setup. It usually contains the signs ≠, < and > depending on the directions of the test.

For this question, we want to test if the extra carbonation of cola results in a higher average compression strength. That is, that cola has a higher average compression strength than the strawberry drink.

Hence, the null hypothesis would be that there isn't significant evidence to suggest that the extra carbonation of cola results in a higher average compression strength, that is, cola has a higher average compression strength than the strawberry drink.

The alternative hypothesis is that there is significant evidence to suggest that the extra carbonation of cola results in a higher average compression strength, that is, cola has a higher average compression strength than the strawberry drink.

Mathematically, if the average compression strength of strawberry drink is μ₁, the average compression strength of cola is μ₂ and the difference in compression strengths is μ = μ₁ - μ₂

The null hypothesis is represented as

H₀: μ = 0 or μ₁ = μ₂

The alternative hypothesis is represented as

Hₐ: μ < 0 or μ₁ - μ₂ < 0

B) So, to perform this test, we need to compute the test statistic

Test statistic for 2 sample mean data is given as

Test statistic = (μ₁ - μ₂))/σ

σ = √[(s₂²/n₂) + (s₁²/n₁)]

μ₁ = average compression strength of strawberry drink = 537

n₁ = sample size of the sample of strawberry drink in cans surveyed = 10

s₁ = standard deviation of the compression strength of strawberry drink in cans surveyed= 22

μ₂ = average compression strength of cola = 559

n₂ = sample size of the sample of cola in cans surveyed = 10

s₂ = standard deviation of the compression strength of strawberry drink in cans surveyed = 17

σ = [(17²/10) + (22²/10)] = 77.5903160379 = 8.792

We will use the t-distribution as no information on population standard deviation is provided

t = (537 - 559) ÷ 8.792

= -2.502 = -2.50

checking the tables for the p-value of this t-statistic

Degree of freedom = df = n₁ + n₂ - 2 = 10 + 10- 2 = 18

Significance level = 0.05

The hypothesis test uses a one-tailed condition because we're testing in only one direction (whether compression strength of cola in can is greater).

p-value (for t = -2.50, at 0.05 significance level, df = 18, with a one tailed condition) = 0.011154 = 0.0112 to 4 d.p.

C) The interpretation of p-values is that

When the (p-value > significance level), we fail to reject the null hypothesis and when the (p-value < significance level), we reject the null hypothesis and accept the alternative hypothesis.

So, for this question, significance level = 0.05

p-value = 0.0112

0.0112 < 0.05

Hence,

p-value < significance level

This means that we reject the null hypothesis accept the alternative hypothesis & say that the extra carbonation of cola results in a higher average compression strength, that is, cola has a higher average compression strength than the strawberry drink.

D) The necessary conditions required before a t-test is deemed valid include.

- The samples used must be a random sample of the population distribution with each variable in the sample independent of other one.

- The distribution of the population where the samples were extracted from must be normal or approximately normal to ensure some degree of normality for the samples.

Hence, the necessary assumption for this t-test among the options is that the distributions of compression strengths are approximately normal.

Hope this Helps!!!

You might be interested in
Java 1
Tanya [424]

Answer:

the anwser is b

Step-by-step explanation:

it is another word for looping

3 0
2 years ago
Inverse of y=xsquare root -36
brilliants [131]

Answer: y=6 i believe

Step-by-step explanation:

3 0
3 years ago
Which expression is equivalent to 5(x + 7)?
larisa86 [58]
You need to multiply both numbers inside the parentheses by 5:

5 times x  = 5x
5 times 7  = 35

So your answer is B. 5x + 35
5 0
3 years ago
Read 2 more answers
Pedro is building a playground in the shape of a right triangle. He wants to know the area of the playground to help him decide
Bumek [7]

Answer:

Dimensions of rectangle:

Length =6 yards

Width=3 1/3 yards

Area of right triangle = 10 yd^2

Step-by-step explanation:

The right triangle has base as 6 yards and height as 3 1/3 of yards.

When we match this triangle with another right triangle to make  the rectangle is another right triangle with sides 6 yards and 3 1/3 yards.

I'll upload the file for work.

5 0
3 years ago
How many groups of 2 people can you form with 6 people
GaryK [48]

Answer:3

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP MEEEEE QUICK
    7·1 answer
  • Hard question but would help me out
    6·1 answer
  • You are certain to get a black or a red card when selecting cards from a shuffled deck. Express the indicated degree of likeliho
    12·1 answer
  • If you make monthly payments of $630 for 6 years, determine the total payment over the lifetime of the loan.​
    7·2 answers
  • Help pleaseeee I need the answer ???
    6·1 answer
  • A system of linear equations is graphed. Which ordered pair is the best estimate for the solution to the system? (0, −2) (−412,
    7·1 answer
  • -5x - 3 &lt; 2x – 18 hey ​
    15·2 answers
  • Jill sold half of her comic books then bought 16 more, she now has 36. With how many did she begin with? Break it down please
    9·1 answer
  • Determine wheter a number satisfies am inequality using inequality statements
    5·1 answer
  • A baseball team played 32 games and lost 8. Katy was the catcher in of the winning games and of the losing games. In how many ga
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!