The mass of NaCl formed is 8.307 grams
<u><em> calculation</em></u>
step 1: write the equation for reaction
Na₂CO₃ + 2HCl → 2 NaCl +CO₂ +H₂O
Step 2: find the moles of Na₂CO₃
moles = mass/molar mass
The molar mass of Na₂CO₃ is = (23 x2) + 12 + ( 16 x3) = 106 g/mol
moles = 7.5 g/106 g/mol =0.071 moles
Step 3: use the mole ratio to determine the mole of NaCl
Na₂CO₃:NaCl is 1:2 therefore the moles of NaCl =0.07 x2 =0.142 moles
Step 4: calculate mass of NaCl
mass= moles x molar mass
the molar mass of NaCl= 23 +35.5 =58.5 g/mol
mass = 0.142 moles x 58.5 g/mol =8.307 grams
In order to find out the ranking of ions basicity, check the
pKa values of each ions. The principle that you need to remember is that the
stronger the acid the weaker the corresponding conjugate base. The pKa dictates
acid value of the compound. The answer would be CH3NH, CH3O-, and CH3CH2-.
EVERYDAY MANS ON THE BLOCK. Lol its 4. You got this from Mans Not Hot, didn't you? xD
Answer:
The answer is "2%"
Explanation:
Equation:


Formula:
![Ka = \frac{[H^{+}][NO_2^{-}]}{[HNO_2]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BNO_2%5E%7B-%7D%5D%7D%7B%5BHNO_2%5D%7D)
Let
at equilibrium

therefore,
![[H^{+}] = 2.0\times 10^{-2} \ M = 0.02 \ M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%202.0%5Ctimes%2010%5E%7B-2%7D%20%5C%20M%20%3D%200.02%20%5C%20M)
Calculating the % ionization:
![= \frac{([H^{+}]}{[HNO_2])} \times 100 \\\\= \frac{0.02}{1}\times 100 \\\\= 2\%\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%28%5BH%5E%7B%2B%7D%5D%7D%7B%5BHNO_2%5D%29%7D%20%5Ctimes%20100%20%5C%5C%5C%5C%3D%20%5Cfrac%7B0.02%7D%7B1%7D%5Ctimes%20100%20%5C%5C%5C%5C%3D%202%5C%25%5C%5C%5C%5C)