Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
Answer: m= 1.02x10² g AlCl3 or 1091.3 g AlCl3
Explanation: solution attached.
Convert mass of Mg to moles
Do the mole ratio between Mg and AlCl3 based from the balanced equation.
Convert moles of AlCl3 to mass using its molar mass.
Neil Bohr contributed towards science in many ways, but his contributions did not include the charge of an electron. Neil Bohr recognized a relationship between the chemical properties of a substance and the number of valence shell electrons. Moreover, he introduced the atomic model in 1913 and provided the liquid-drop model to explain nuclear fusion.
Answer:
6.68 X 10^-11
Explanation:
From the second Ka, you can calculate pKa = -log (Ka2) = 6.187
The pH at the second equivalence point (8.181) will be the average of pKa2 and pKa3. So,
8.181 = (6.187 + pKa3) / 2
Solving gives pKa3 = 10.175, and Ka3 = 10^-pKa3 = 6.68 X 10^-11