Answer:
(a) The distance-time graph for an object with uniform speed is giving by a straight line sloped graph with a constant positive or negative gradient as shown in the attached diagram
(b) The distance-time graph for an object with non-uniform speed is giving by a curved line sloped graph with varying gradient as shown in the attached diagram
(c) The velocity-time graph for a car with uniform motion is giving by a horizontal line graph at the speed of constant motion with a zero gradient as shown in the attached diagram
(d) The velocity-time graph for a car moving with uniform acceleration is giving by a straight line sloped graph with a constant positive or negative gradient as shown in the attached diagram
(e) The velocity-time graph for a car moving with non-uniform acceleration is giving by a curved line sloped graph with varying gradient as shown in the attached diagram
(f) According to Newton's first law of motion, an object at rest will remain at rest with no motion unless acted by a force, an therefore, will have no motion with time
Explanation:
The sunlight of all colors passes through air, the blue part causes charged particles to oscillate faster than does the red part. More of the sunlight entering the atmosphere is blue than violet, however, and our eyes are somewhat more sensitive to blue light than to violet light, so the sky appears blue.
Average speed of the car is 4.57 m/s
Explanation:
- Speed is calculated by the rate of change of displacement.
- It is given by the formula, Speed = Distance/Time
- Here, distance = 112 m and time = 24.5 s
Speed of the car = 112/24.5 = 4.57 m/s
It would be negative regardless of what you define as a positive direction.
Answer:
the acceleration is reduced by gravity
a = (15 / .35) - [9.8 * sin(65º)]
Explanation:
break the launch vector into two components, vertical and horizontal
Force Net Vertical=-9.8*.350+15cos65 N
force net horizonal=15sin65
initial acceleration= force/mass= (-9.8+15/.350*cos65)j+(15/.350*sin65)i
using i,j vectors..