<span>The hypothesis must be testable and falsifiable. The first stipulation is that the hypothesis must be able to be tested and be phrased as such. In addition, the second stipulation holds that the statement must be able to be falsified; that is, the statement can be showed to not be the case.</span>
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Answer:
W= 210 N
Explanation:
Just use work = Fparallel*d
W= 35*6
W= 210 N
It is 6 g/cm3 because density cannot be negative, and it is not speed in which the unit would be m/s.
plasma is a superheated liquid
So, a would-be the correct option.