In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer:
(1) Resonance
Explanation:
Resonance is the process whereby a system is set into vibration due to the vibration of a nearby system with larger amplitude. The frequency at which this vibration takes place is called the resonant frequency.
It is a phenomenon of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to the natural frequency of the system on which it acts.
Answer:
1,632 rounded by the nearest ten is 1630
783 rounded by the nearest hundred is 800
43,761 rounded by the nearest thousand is 44,00
Explanation:
Using the term c in this case is a little confusing. It is more generic to use a general velocity, v. That way, in this case, we know to use the speed of sound.
wavelength*frequency=v
wavelength_20Hz = (345 m/s)/(1/20s)
<span>wavelength_20kHz = (345 m/s)/(1/20000s)
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>