Answer:
SnH4
Explanation:
Because the melting point of SnH4 is higher than CH4
You can solve this by dividing the mass by the molar mass. The molar mass of CuF2 is about 101.5 g/mol. Therefore there are 100.0/101.5 = 0.985 mol.
If it's an endothermic reaction, then that means heat is being added to the system therefore H>0. Entropy is disorder, and since there are more moles on the products side, entropy is increasing therefore S>0 as well.
Answer : The balanced reduction half-reaction is:

Explanation :
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The given balanced redox reaction is :

The half oxidation-reduction reactions are:
Oxidation reaction : 
Reduction reaction : 
In order to balance the electrons, we multiply the oxidation reaction by 2 and reduction reaction by 3 and then added both equation, we get the balanced redox reaction.
Oxidation reaction : 
Reduction reaction : 
The balanced redox reaction will be:

Thus, the balanced reduction half-reaction is:

Answer:
2 grams
Explanation:
One MOLE of hydrogen atoms contains the same number of atoms as the number of hydrogen molecules in one MOLE of hydrogen molecules, i.e., Avagadros number. However, one mole of hydrogen atoms has a mass of 1 gram while one MOLE of hydrogen molecules has a mass of 2 grams.