Covalent compounds are generally not very hard because they are formed by two or more nonmetallic atoms.
<h3>COVALENT COMPOUNDS:</h3>
Covalent compounds are compounds whose constituent elements are joined together by covalent bonds.
Covalent bonding occurs when two or more nonmetallic atoms of an element share valence electrons. This means that covalent compounds will not be physically hard since they constitute non-metals.
Examples of covalent compounds are:
- H2 - hydrogen
- H2O - water
- HCl - hydrogen chloride
- CH4 - methane
Learn more about covalent compounds at: brainly.com/question/21505413
Answer:
A. 4.5 mol Mg(OH)₂
B. 6 mol NaOH
Explanation:
Let's consider the following balanced equation.
Mg(NO₃)₂ + 2 NaOH ⇒ Mg(OH)₂ + 2 NaNO₃
PART A
The molar ratio of NaOH to Mg(OH)₂ is 2:1. The moles of Mg(OH)₂ produced from 9 moles of NaOH are:
9 mol NaOH × 1 mol Mg(OH)₂/2 mol NaOH = 4.5 mol Mg(OH)₂
PART B
The molar ratio of NaOH to NaNO₃ is 2:2. The moles of NaOH needed to produce 6 moles of NaNO₃ are:
6 mol NaNO₃ × 2 mol NaOH/2 mol NaNO₃ = 6 mol NaOH
Answer:
14 solubility in 200 gram of water at 20 c
Explanation:
Hope this helped, and pleas mark as Brainliest :)
By convention, the symbol Z is assigned to the number of protons in the nucleus, or simply, the atomic number of an element. This is actually used when you want to determine the effective nuclear charge of a specific electron of an element. The equation is:
Z* = Z - S
where
Z* is the effective nuclear charge
Z is the atomic number
S is the number of electrons between the electron in question and the nucleus
There is due to a phenomenon called the shielding effect. This effect states that the farther the electron is from the nucleus, the lesser is its pull of force to the nucleus. That is the reason why the valence electrons (outermost electrons) are the ones always involved in chemicals reactions. Because they are not that strongly bonded to the nucleus of an atom.
Answer:
OCl− + H2O ⇌ HOCl + OH−
Explanation:
Sodium hypochlorite is a corrosive base with pH 13, that will react with water in a neutralization process to finally obtein hypochlorous acid. This acid has a great disinfectant effect in water.