Answer:
<u></u>
Explanation:
The lowering of the freezing point of a solvent is a colligative property ruled by the formula:
Where:
- ΔTf is the lowering of the freezing point
- Kf is the molal freezing constant of the solvent: 1.86 °C/m
- m is the molality of the solution
- i is the van't Hoff factor: the number of particles (ions) per unit of ionic compound.
<u />
<u>a) molality, m</u>
- m = number of moles of solute/ kg of solvent
- number of moles of CaI₂ = mass in grams/ molar mass
- number of moles of CaI₂ = 25.00g / 293.887 g/mol = 0.0850667mol
- m = 0.0850667mol/1.25 kg = 0.068053m
<u>b) i</u>
- Each unit of CaI₂, ideally, dissociates into 1 Ca⁺ ion and 2 I⁻ ions. Thus, i = 1 + 2 = 3
<u />
<u>c) Freezing point lowering</u>
- ΔTf = 1.86 °C/m × 0.068053m × 3 = 0.3797ºC ≈ 0.380ºC
<h2>I have problems to upload the full answer in here, so I attach a pdf file with the whole answer.</h2>
Answer is: pH <span>of a 0,01 M solution is 2.
c(HNO</span>₃) = 0,01 M = 0,01 mol/L.
pH = -log(c(HNO₃).
pH = -log(0,01 mol/L).
pH = 2.
pH<span> is a numeric scale used to specify the </span>acidity<span> or </span>basicity<span> of an </span>aqueous solution<span>. If pH is less than seven, than solution is acidic and if pH is greater seven, solution is basic, if pH is equal seven, solution is neutral.</span>
Answer:
The molecular formula = 
Explanation:
Given that:
Mass of compound, m = 0.145 g
Temperature = 200 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (200 + 273.15) K = 473.15 K
V = 97.2 mL = 0.0972 L
Pressure = 0.74 atm
Considering,
Using ideal gas equation as:
where,
P is the pressure
V is the volume
m is the mass of the gas
M is the molar mass of the gas
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the values in the above equation as:-
The empirical formula is =
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12 + 1 = 13 g/mol
Molar mass = 78.31 g/mol
So,
Molecular mass = n × Empirical mass
78.31 = n × 13
⇒ n ≅ 6
The molecular formula = 
Explanation:
An alpha particles is basically a helium nucleus and it contains 2 protons and 2 neutrons.
Symbol of an alpha particle is
. Whereas a neutron is represented by a symbol
, that is, it has zero protons and only 1 neutron.
Therefore, reaction equation when an aluminum- nuclide transforms into a phosphorus- nuclide by absorbing an alpha particle and emitting a neutron is as follows.

Answer:
a. 50ml b.10ml c. 6.097ml d. 190.1 ml
Explanation:
According to Boyle's law
Volume is inversely proportional to pressure at constant temerature
Mathematically
P1V1=P2V2
P1=Initial pressure=0.8atm
V1=Initial volume=25ml
making V2 the subject
at 0.4atm P2=0.4 atm,
V2=25×0.8/0.4
=50ml
at 2 atm V2=25×0.8/2
=10 ml
1mmHg=0.00131579
2500mmHg=3.28 atm
At 3.28 atm,V2=25×0.8/3.28
=6.097 ml
at 80.0 torr
1 torr=0.00131579
80 torr=0.1052 atm
at 0.1048 atm V2=25×0.8/0.1048
=190.1 ml