The correct answer is ClO, ClO3-, ClO- and ClO4-
Kossel and Lewis in 1916 developed an important theory of chemical combination between atoms known as electronic theory of chemical bonding. According to this, atoms can combine either by transfer of valence electrons from one atom to another (gaining or losing) or by sharing of valence electron in order to have an octet( 8 electron) in their shells. This is known as octet rule.
In ClO2-, oxygen contains 8 electrons in its valence shell and oxygen will share one electron with chlorine to complete the octet of Cl. In other four, we can clearly see that there are more or less than 8 electrons in the outer shell of oxygen so we can clearly say that ClO, ClO3-, ClO- and ClO4- are disobeying the octet rule.
Answer: Number of Hydrogen Bond Acceptor atoms =
2 Number of Hydrogen Bond Donor atoms =
1Explanation: Hydrogen bond interactions are formed between those molecules which contains partial positive hydrogen atoms bonded covalently to most electronegative atoms like
Oxygen,
Nitrogen and
Fluorine.
When hydrogen is attached to Oxygen, Nitrogen or Fluorine its
electron density decreases and gets partial positive charge, this partial positive charged hydrogen atom then makes hydrogen bonding with the most electronegative element (partial negative) of neighbor molecule.
In
Acetic acid there are two oxygen atoms hence there are two most electronegative elements therefore, two Hydrogen Bond Acceptor atom and each oxygen atom can accept two hydrogen bonds.
Also, it contains only one Hydrogen atom attached to oxygen atom so it has one Hydrogen Bond Donor atom.
The kinetic energy of gas particles depends on temperature. Greater the temperature higher will be the average kinetic energy
Kinetic energy is related to the temperature as:
KE = 3/2 kT
where k = Boltzmann constant
T = temperature
In the given example, since the temperature of O2 gas is maintained at room temperature, the average KE will also remain constant.
The fifth postulate of the kinetic molecular theory which states that the temperature of the gas depends on the average KE of the particles of the gas explains the above observation.