Answer:
the electric field strength on the second one is 2.67 N/C.
Explanation:
the electric fiel on the first one is:
E1 = k×q/(r^2)
r^2 = k×q/(E1)
= (9×10^9)×(q)/(24.0)
= 375000000q
then the electric field on the second one is:
E2 = k×q/(R^2)
we know that R = 3r
R^2 = 9×r^2
E2 = k×q/(9×r^2)
= k×q/(9×375000000q)
= k/(9×375000000)
= (9×10^9)/(9×375000000)
= 2.67 N/C
Therefore, the electric field strength on the second one is 2.67 N/C.
I think the corect answer would be C. When a police officer receives information that you are speeding in your vehicle, she is using the frequency of the wave to measure the Doppler Effect. As the speed of a vehicle increases, the greater the change of the frequency of the waves would be transmitted to the radar guns which is being used by the police officer. Doppler effect is an effect that is observed in sound and light waves as these waves move away or to the direction of the observer. This is being used in many applications like in astronomy, weather balloons, the radar guns,and for underwater researches.
Voltage = current x resistance
since R is doubled, current must reduce by half.
So,
new current = 120/2 = 60mA
Answer:
Explanation:
We shall apply Pascal's Law in fluid mechanics
According to it , pressure is transmitted in liquid from one point to another without any change .
25 cm diameter = 12.5 x 10⁻² m radius
Area = 3.14 x (12.5 x 10⁻²)²
= 490.625 x 10⁻⁴ m²
Pressure by vehicle
Force / area
13000 / 490.625 x 10⁻⁴
= 26.497 x 10⁴ Pa
5 cm diameter = 2.5 x 10⁻² radius
area = 3.14 x (2.5 x 10⁻²)²
= 19.625 x 10⁻⁴ m²
If we assume required force F on this area
Pressure = F / 19.625 x 10⁻⁴ Pa
According to Pascal Law
F / 19.625 x 10⁻⁴ = 26.497 x 10⁴
F = 19.625 x 26.497
= 520 N