and C. taste, odor, and texture
It is really important to cite units while engaging with scientific problems as they help in evaluating the right solution without any mistake.
<u>Explanation:
</u>
While solving analytical questions to evaluate the right answers, the units play a crucial role in the equations. With the help of units in the formula, we can easily judge whether we are placing the values in the same parameters and hence, lessen the probabilities of wrong answers.
For example, while adding two measurements i.e. 4 m and 36 cm; if we don't consider the units and move on with the addition, the answer will be 40. Now, the first thing is that we are adding two measurements of different parameters. Besides this, the answers will be wrong i.e. 4.36 m is the correct answer instead of 40 and that too without mentioning the unit.
The chances of selecting the wrong answer are more when we need to choose options out of multiple choices because here we often get confused. That's why we should always make sure that we approach the scientific questions along with the units.
Answer:
The pencil is not pulled towards a person due to a very small magnitude of force between them, due to lighter masses.
Explanation:
Let us apply Newton's Law of Gravitation between a person and pencil.
Average Mass of a Normal Pencil = m₁ = 10 g = 0.01 kg
Average Mass of a Person = m₂ = 80 kg
Distance between both = r = 1 cm = 0.01 m (Taking minimal distance)
Gravitational Constant = G = 6.67 x 10⁻¹¹ N.m²/kg²
So,
F = Gm₁m₂/r²
F = (6.67 x 10⁻¹¹ N.m²/kg²)(0.01 kg)(80 kg)/(0.01 m)²
<u>F = 5.34 x 10⁻⁷ N</u>
This Force is very small in magnitude due to the light masses of both objects.
<u>Therefore, the pencil is not pulled towards a person due to a very small magnitude of force between them, due to lighter masses.</u>
We can solve the problem by using Ohm's law.
The resistance of the person, with dry skin, is

. In order to be felt, the current must be at least

Ohm's law gives us the relationship between current and voltage:

where
I is the current
R the resistance
V the voltage
Using the data of the problem, we find that the minimum voltage needed is
I believe there is more to this question ..