Newton's 3 laws are...
inertia: things tend to continue to do what they are doing.
Change: to make something change you need a force to change it. the force needed = the mass times its acceleration
<span>
Resistance: When you push on something, it pushes back.
From yahoo answers
</span>
Thank you for posting your question here at brainly. But your question seems incomplete. I will assume you based the situation below:
<span>An electrons moves at 2.0x10^6 m/s through a region in which there is a magnetic field of unspecified direction and magnitude 7.4x10^-2 T.
The </span> largest possible magnitude of the acceleration of the electron due to the magnetic field is <span>= 2.6 × 10 ¹⁶ m / s ²</span>
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J
Answer:
6200 J
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
The car is initially stationary. The truck and car stick together after the collision, so they have the same final velocity. Therefore:
m₁ u₁ = (m₁ + m₂) v
Solving for the truck's initial velocity:
(2700 kg) u = (2700 kg + 1000 kg) (3 m/s)
u = 4.11 m/s
The change in kinetic energy is therefore:
ΔKE = ½ (m₁ + m₂) v² − ½ m₁ u²
ΔKE = ½ (2700 kg + 1000 kg) (3 m/s)² − ½ (2700 kg) (4.11 m/s)²
ΔKE = -6200 J
6200 J of kinetic energy is "lost".