The perimeter of ΔWXY is : ( D ) 14.5 cm
<u>Calculating the </u><u>perimeter </u><u>of ΔWXY</u>
QR = WY / 2
RS = XW / 2
QS = XY / 2
Given that : QR = 2.93 cm , RS = 2.04 cm, QS = 2.28 cm
Therefore
Perimeter of ΔWXY = ∑ WY + XW + XY
= 2SR + 2QS + 2QR
= 2(2.04) + 2(2.28) + 2(2.93)
= 14.5 cm
Hence we can conclude that the perimeter of ΔWXY = 14.5 cm
learn more about perimeter calculations : brainly.com/question/24744445
Answer:
2.36 x 10^5 kg
Explanation:
radius of hose, r = 0.017 m
radius of underground pipe, R = 0.088 m
number of hoses, n = 3
velocity of water in underground pipe, V = 2.7 m/s
Let v is the velocity of water in each hose.
According to the equation of continuity
A x V = n x a x v
π R² x V = n x π x r² x v
0.088 x 0.088 x 2.7 = 3 x 0.017 x 0.017 x v
v = 24.12 m/s
(a) Amount of water poured onto a fire in one hour by all the three hoses
= n x a x v x density of water x time
= 3 x 3.14 x 0.017 x 0.017 x 24.12 x 1000 x 3600
= 2.36 x 10^5 kg
Thus, the amount of water poured onto the fire in one hour is 2.36 x 10^5 kg.
Answer:
Speed of sound inside metal is ≅ 8200 
Explanation:
Given :
Length of metal bar
m
From general velocity equation,

Where
speed of sound in air = 343 
For finding time from above equation,


sec
Since pulses are separated by
sec
So we take time difference,

So speed of sound in metal is,


