Answer: initially the packet was ascending up with the balloon.
Taking upward as positive direction;
initial velocity, u = 4.9 m/s
final velocity = v m/s
initial height, h₁ = 245 m
final height, h₂ = 0
a = -9.8 m/s²
time taken = t seconds
s = ut + 0.5at²
⇒ (h₂-h₁) = ut + 0.5at²
⇒ 0-245 = 4.9t + 0.5×(-9.8)×t²
⇒ -245 = 4.9t - 4.9t²
⇒ 4.9t² -4.9t -245 =0
Solving it, we get t = 7.59s
v = u + at = 4.9 -9.8×7.59 = 4.9 - 74.38 = -69.48 m/s
So velocity is 69.48 m/s downward
Explanation:
Answer:
The voltage on the secondary is 12 V while the current is 0.5 A.
Explanation:
A transformer works by changing the level of the voltage and current on a circuit using a magnetic field and two coils. The ratio by wich they are changed is dependant on the ratio of turns between the primary and secondary of the transformer. In this case we have a ratio for the voltage of:
ratio = (turns on the secondary)/(turns on the primary)
ratio = 100/1000 = 0.1
So in this case the voltage delivered to the primary will be multiplied by 0.1. We can now calculate the voltage on the secondary:
Voltage secondary = Voltage primary* ratio = 120*0.1 = 12 V
The transformer maintains roughly the same power output on both sides, since the power output on a electric circuit is given by the product of the voltage by the current on that circuit, to maintain the same power when the voltage has been droped the current must be raised by the same ratio. So we have:
Current secondary = Current primary*(1/ratio) =0.05*(1/0.1) = 0.5 A
Answer:
Explanation:
From the information given:
The motional emf can be computed by using the formula:





E = 0.72 volts
According to the question, suppose the wire segment was parallel, there will no be any emf induced since the magnetic field is present along the y-axis.
As such, for any motional emf should be induced, the magnetic field, length, and velocity are required to be perpendicular to one another .
Then the motional emf will be:

E = 0 (zero)
A pedestal rock, also known as a rock pedestal or mushroom rock, is not a true balancing rock, but is a single continuous rock form with a very small base leading up to a much larger crown. Some of these formations are called balancing rocks because of their appearance. The undercut base was attributed for many years to simple wind abrasion, but is now believed to result from a combination of wind and enhanced chemical weathering at the base where moisture would be retained longest. Some pedestal rocks sitting on taller spire formations are known as hoodoos. I think this is the answer if I’m wrong I’m very sorry
Answer: A device that uses infrared sensors.
Explanation: