1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
15

North poles of magnets attract each other. true or false

Physics
2 answers:
bazaltina [42]3 years ago
6 0

North to north repels, south to south repels, north to south attracts, the same vise versa.

lilavasa [31]3 years ago
6 0

its false....i think


You might be interested in
6. Mass affects how fast an object falls.<br> True<br> False
dimulka [17.4K]

The statement: Mass affects how fast an object falls is true.

6 0
3 years ago
Read 2 more answers
How much force do you push down on the Earth with? (Hint: 1kg is about 2 pounds).​
Gennadij [26K]

Answer: 100lbs

Explanation: The Earth pushes you down at 100lbs, so you push down the earth by 100lbs which is enough to keep you firmly attached to the ground and not allow you to jump more than a couple of feet.

3 0
3 years ago
Read 2 more answers
a ball of diameter 10 cm and mass 10 grams is dropped in a container of water. the cross sectional area of the container is 100
Anastaziya [24]

Answer:

h = 9.83 cm

Explanation:

Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water

       

let's reduce the magnitudes to the SI system

         r = 10 cm = 0.10 m

         m = 10 g = 0.010 kg

         A = 100 cm² = 0.01 m²

the definition of density is

          ρ = m / V

the volume of a sphere

         V = \frac{4}{3} \ \pi r^{3}

          V = \frac{4}{3} π 0.1³

          V = 4.189 10⁻³ m³

let's calculate the density of the ball

           ρ = \frac{0.010}{4.189 \ 10^{-3} }

           ρ = 2.387 kg / m³

the tabulated density of water is

         ρ_water = 997 kg / m³

we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation

            B - W = 0

            B = W

             

where B is the thrust that is given by Archimedes' principle

           ρ_liquid  g V_submerged = m g

           V_submerged = m / ρ_liquid

we calculate

            V _submerged = 0.10 9.8 / 997

             V_submerged = 9.83 10⁻⁴ m³

The volume increassed of the water container

           V = A h

            h = V / A

let's calculate

            h = 9.83 10⁻⁴ / 0.01

            h = 0.0983  m

this is equal to h = 9.83 cm

8 0
3 years ago
At takeoff, an aircraft travels at 62 m/s, so that the air speed relative to the bottom of the wing is 62 m/s. Given the sea lev
olganol [36]

Answer:

the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.

Explanation:

We will use Bernoulli's theorem in order to determine the pressure lift:

ΔP = 1/2 (ρ)(v₂² - v₁²)

the generated pressure lift is ΔP = 1000 N/m²

Therefore,

1000 = 1/2(ρ)(v₂² - v₁²)

v₂² - v₁² = 2000 / ρ

v₂² = (2000 N/m² / 1.29 kg/m³) + (62 m/s)²

v₂ = √[ (2000 N/m² / 1.29 kg/m³) + (62 m/s)² ]

<em>v₂ = 73.4 m/s </em>

<em></em>

Therefore, the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.

5 0
3 years ago
1 A 75-g ball is projected from a height of 1.6 m with a horizontal velocity of 2 m/s and bounces from a 400-g smooth plate supp
Tanzania [10]

Answer with explanation:

We are given that  

Mass of ball,m_1=75 g=\frac{75}{1000}=0075kg

1 kg=1000 g

Height,h_1=1.6 m

h_2=0.6 m

Horizontal velocity,v_x=2 m/s

Mass of platem_2=400 g=\frac{400}{1000}=0.4 kg

a.Initial velocity of plate,u_2=0

Velocity before impact=u_1=\sqrt{2gh_1}=\sqrt{2\times 9.8\times 1.6}=5.6m/s

Where g=9.8 m/s^2

Velocity after impact,v_1=\sqrt{2gh_2}=\sqrt{2\times 9.8\times 0.6}=3.4m/s

According to law of conservation of momentum  

m_1u_1+m_2u_1=-m_1v_1+m_2v_2

Substitute the values  

0.075\times 5.6+0=-0.075\times 3.4+0.4v_2

0.4v_2=0.075\times 5.6+0.075\times 3.4

v_2=\frac{0.075\times 5.6+0.075\times 3.4}{0.4}=1.69 m/s

Velocity of plate=1.69 m/s

b.Initial energy=\frac{1}{2}m_1v^2_x+m_1gh_1=\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 1.6=1.326 J

Final energy=\frac{1}{2}m_1v^2_x+m_1gh_2+\frac{1}{2}m_2v^2_2

Final energy=\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 0.6+\frac{1}{2}(0.4)(1.69)^2=1.162 J

Energy lost due to compact=Initial energy-final energy=1.326-1.162=0.164 J

6 0
3 years ago
Other questions:
  • What are three basic conditions for a hurricane to form
    11·1 answer
  • A skier with a 65kg mass skies down a 30 degree incline hill. The coefficient of friction is 0.1. a. Draw a free body diagram. b
    11·1 answer
  • Which of these is NOT a reason why the geocentric model of the solar system was once commonly accepted as the correct model?
    9·2 answers
  • Where are auroras frequently seen
    5·2 answers
  • Please help PHYSICS
    7·2 answers
  • A 3.00 kg pool ball is moving to the left with a speed of 4.30 m/s without friction. If it experiences an impulse of -4.00 Ns, w
    7·1 answer
  • Q
    13·1 answer
  • A scientist is planning an experiment that will include the measurement of temperatures. She wishes to avoid using negative valu
    15·1 answer
  • What role does the sun play in driving the water cycle in Antarctica
    6·1 answer
  • Why do living beings and machine need energy?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!