1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
5

(a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model i

t as a particle? (b) Calculate the magnitude of the angular momentum of the earth due to its rotation around an axis through the north and south poles, modeling it as a uniform sphere. Consult Appendix E and the astronomical data in Appendix F.
Physics
1 answer:
Anni [7]3 years ago
6 0

Answer:

(a) L=2.6742\times 10^{40}\, kg.m^2.s^{-1}

(b) L_s=7.07 \times 10^{23} \, kg.m^2.s^{-1}

Explanation:

<u>For Earth we have:</u>

  • mass of earth, m_E=5.97\times 10^{24}\, kg
  • radius of earth, R_E=6.38\times 10^6m
  • orbital radius, r=1.5 \times 10^{11}m
  • period of rotation, t_{rot}=24h=86400\, s
  • period of revolution, t_{rev}= 1 yr=3.156\times 10^7 s

(a)

Angular momentum, L=?

∵L=I.\omega...............................(1)

For a particle of mass m moving in a circular path at a distance r from the axis,

I=m.r^2

& v=r.\omega

Putting respecstive values in eq. (1)

L=m_E\times r^{2}\times \omega

L=5.97\times 10^{24}\times (1.5 \times 10^{11})^2\times \frac{2\pi}{3.156\times 10^7}

L=2.6742\times 10^{40}\, kg.m^2.s^{-1}

To model earth as a particle is  reasonable because the distance between the sun and the earth is very large s compared to the radius if the earth.

(b)

For a uniform sphere of mass M and radius R and an axis through its center,  I=\frac{2}{5}M.R^2

using eq. (1)

L_s=(\frac{2}{5}m_E.R_E^2) \omega

L_s=\frac{2}{5} \times 5.97\times 10^{24} \times 6.38\times 10^6\times \frac{2\pi}{86400}

L_s=7.07 \times 10^{23} \, kg.m^2.s^{-1}

You might be interested in
How much is done when moving a box 25 m with a net force of 30 N?
mariarad [96]

Answer:

W = 750 [J]

Explanation:

The question should be related to work, work in physics is defined as the product of force by distance. In this way, we can use the following equation.

W=F*d

where:

F = force = 30 [N]

d = distance = 25 [m]

W = work [J]

Now replacing:

W=30*25\\W=750 [J]

4 0
3 years ago
The rms current output in a circuit is 7.75 A. What is the maximum current?
Andru [333]
The maximum current in an ac circuit is related to the rms current by:
I_{rms} =  \frac{I_0}{ \sqrt{2} }
where I_{rms} is the rms current and I_0 is the maximum current.

If we re-arrange the formula and we use I_{rms}=7.75 A, we can find the value of the maximum current:
I_0 =  \sqrt{2} I_{rms} =  \sqrt{2}(7.75 A)=11.0 A
5 0
3 years ago
2. In order to get a Master's degree a
melomori [17]
I don’t know how to answer your question but if you want go to google
7 0
4 years ago
We can change a gas to liquid by the temperature and the pressure.
hodyreva [135]

I am not sure how you want me to answer this, but yes, gas can go from being a gas to a liquid when the right temp and pressure is applied.

6 0
4 years ago
You drag a suitcase of mass 8.2 kg with a force of f at an angle 41.9 ◦ with respect to the horizontal along a surface with kine
DedPeter [7]

Answer:

35.6 N

Explanation:

We can consider only the forces acting along the horizontal direction to solve the problem.

There are two forces acting along the horizontal direction:

- The horizontal component of the pushing force, which is given by

F_x = F cos \theta

with \theta=41.9^{\circ}

- The frictional force, whose magnitude is

F_f = \mu mg

where \mu=0.33, m=8.2 kg and g=9.8 m/s^2.

The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:

F_x - F_f=0\\F_x = F_f\\F cos \theta = \mu mg\\F=\frac{\mu mg}{cos \theta}=\frac{(0.33)(8.2 kg)(9.8 m/s^2)}{cos(41.9^{\circ})}=35.6 N

8 0
3 years ago
Other questions:
  • wallace and vernonville are 192 miles apart. A car leaves wallace traveling towards vernonville, and another car leaves vernonvi
    9·1 answer
  • Define, describe and solve for speed, velocity and acceleration
    11·1 answer
  • What term best describes the function of
    10·2 answers
  • What type of mixture is salad dressing?​
    11·1 answer
  • A Red Rider bb gun uses the energy in a compressed spring to provide the kinetic energy for propelling a small pellet of mass 0.
    5·1 answer
  • A 1000kg car is rolling slowly across a level surface at 1 m/s heading twoards a group o fsmall innocent children. The doors are
    8·1 answer
  • An archer fires an arrow at a castle 230 m away. The arrow is in flight for 6 seconds, then hits the wall of the castle and stic
    8·1 answer
  • a body starts from rest and accelerates uniformly at 5ms‐2. Calculate the time taken by the body to cover a distance of 1km​
    11·2 answers
  • A car is driving on a flat road. When the driver hits the brakes, the car
    13·1 answer
  • What would happen to the two balls if one of them were kept positively charged and the charge on the other ball were slowly incr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!