1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
3 years ago
14

We can change a gas to liquid by the temperature and the pressure.

Physics
1 answer:
hodyreva [135]3 years ago
6 0

I am not sure how you want me to answer this, but yes, gas can go from being a gas to a liquid when the right temp and pressure is applied.

You might be interested in
The Earth revolves around the Sun once a year at an average distance of 1.50×1011m. Find the orbital radius that corresponds to
DedPeter [7]

Answer:

9.4\cdot 10^{10} m

Explanation:

We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

\frac{r_a^3}{T_a^2}=\frac{r_e^3}{T_e^2}

where

r_o is the distance of the new object from the sun (orbital radius)

T_o=180 d is the orbital period of the object

r_e = 1.50\cdot 10^{11} m is the orbital radius of the Earth

T_e=365 d is the orbital period the Earth

Solving the equation for r_o, we find

r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m

3 0
3 years ago
What os the konectic energy of 620.0kg coaster moving with a velocity of 9.00m/s
luda_lava [24]
Hope this helps you.

4 0
3 years ago
what is the position of centre of curvature for concave and convex mirror show with the help of diagram if you can​
Anon25 [30]

it is the point at infinity where it is at a distance from the curve equal to the radius of curvature lying on the normal vector. Sorry no diagram

8 0
2 years ago
A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal.
Korvikt [17]

Answer:

B) 27.3 m

Explanation:

The rock describes a parabolic path.

The parabolic movement results from the composition of a uniform rectilinear motion (horizontal ) and a uniformly accelerated rectilinear motion of upward or downward motion (vertical ).

The equation of uniform rectilinear motion (horizontal ) for the x axis is :

x =  vx*t   Equation (1)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m/s  

The equations of uniformly accelerated rectilinear motion of upward (vertical ) for the y axis  are:

(vfy)² = (v₀y)² - 2g(y- y₀)    Equation (2)

vfy = v₀y -gt    Equation (3)

Where:  

y: vertical position in meters (m)  

y₀ : initial vertical position in meters (m)  

t : time in seconds (s)

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Data

v₀ = 30 m/s , at an angle  α=40.0° above the horizontal

v₀x = vx = 30*cos40° = 22.98 m/s

v₀y = 30*sin40° = 19.28 m/s

y₀ = 2m

y =  18.0 m

g = 9.8 m/s²

Calculation of the time (t) it takes for the rock to reach at  18 m above the ground

We replace data in the equation (2)

(vfy)² = (v₀y)² - 2g(y- y₀)    

(vfy)² = (19.28)² - 2(9.8)(18- 2)

(vfy)² = 371.86 - 313.6

(vfy)² = 58.26

v_{f} = \sqrt{58.26}

vfy = 7.63 m/s

We replace vfy = 7.63 m/s in the equation (2)

vfy = v₀y - gt

7.63 = 19.28 - (9.8)(t)

(9.8)(t) = 11.65

t = 11.65 / (9.8)

t = 1.19 s

Horizontal distance from where the rock was thrown to the window

We replace t = 1.19 s , in the equation (1)

x =  vx*t  

x = (22.98)* ( 1.19 )

x = 27.3 m

3 0
3 years ago
You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength
GREYUIT [131]

Answer:

Period of the signal.

Explanation:

So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.

When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.

Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.

NB: not the amplitude but the period.

7 0
3 years ago
Other questions:
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • F the radius of a sphere is increasing at the constant rate of 2 cm/min, find the rate of change of its surface area when the ra
    11·1 answer
  • Please help me with both of them
    8·1 answer
  • Ben wants to model how the motion of particles changes with temperature. He considers water in an iron pot. Ben draws a model to
    6·1 answer
  • A toy rocket moving vertically upward passes by a 2.0-m-high window whose sill is 8.0 m above the ground. The rocket takes 0.15
    9·1 answer
  • the sole of a tennis shoe has a surface area of 0.0290 m^2. if it is worn by a 65.0 kg person, what pressure does the shoe exert
    10·1 answer
  • Compared to its weight on Earth, the weight of a 10N object will be
    13·2 answers
  • Need help on this thanks<br>​
    7·1 answer
  • A child sits on a dock and notices that 8 wavelengths pass the end of the dock in 4 seconds. What is the
    5·1 answer
  • An object travels a distance d with acceleration a over a period of time t according to the equation: d = at² After 2.3 seconds
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!