His is a step down transformer since n(primary) is greater than n(seconcary). You relate the input voltage with the ouput voltage with the following equation:
<span>Vout = n2/n1*Vin (n2/n1 is essentially your 'transfer function' that dictates what a specified input would produce) </span>
<span>Solving the equation: </span>
<span>Vin = Vout*n1/n2 = (320V)*(600/300) = 640 V </span>
<span>This is checked by seeing if Vin is greater than Vout, which it is for a step down transformer.</span>
From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
Answer:
D gravity
Explanation:
please mark me brainliest
Answer:
Surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible.
Surface tension is caused by effects of intermolecular forces at liquid interface.
Surface tension increases as intermolecular forces increases.
Explanation:
- Surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible. It can also be seen as the energy required to increase the surface of a liquid by a unit amount.
- Surface tension is caused by the mediating effects of intermolecular forces at the liquid interfaces. Example in water, surface tension is caused by the mediating effect of the force between hydrogen and oxygen molecules. Liquids tends to reduce their surface area because of inward attarction of the liquid molecules.
- Surface tension increases as intermolecular forces increases. Also, surface tension decreases as intermolecular forces decreases.
Tension is the force causing the path. It is always directed inward for circular motion. To hit the ceiling you need B. The stopper will travel along the tangent line it was moving when released (when tension goes to 0). This is upward in B so it will keep going up to the ceiling.
The velocity is pointed along the tangent line at all times (parallel to the edge of the circle at any point)