1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
3 years ago
13

Use the ratio table to determine how many people 13 subs would serve. Explain look at the photo

Mathematics
2 answers:
ss7ja [257]3 years ago
8 0

Answer:

13 subs will serve 52 people.    

Step-by-step explanation:

We are given the following information in the question:

Number of subs:     3       5        8

 People served:      12     20     32

We have to find that how many people with be served by 13 subs.

We can solve this question with the help of ratio.

\text{Ratio} = \displaystyle\frac{\text{Number of subs}}{\text{People served}}\\\\= \frac{3}{12} = \frac{1}{4}

The obtained ratio is 1:4, which means that 1 sub can serve 4 peoples.

Let x be the number of people served by 13 subs:

\displaystyle\frac{1}{4} = \frac{13}{x}\\\\\Rightarrow x = \frac{13\times 4}{1} = 52

Hence, 13 subs will serve 52 people.

adoni [48]3 years ago
5 0
I think its 44. The amount of people increase by 12 every time you add more subs. Hope that helps!
You might be interested in
3xz(9xy+z)-2yz(x+y-z)
Alisiya [41]

Answer:  27x²yz + 3xz² - 2xy - 2y²z + 2yz²  

<u>Step-by-step explanation:</u>

Use the distributive property.

   3xz(9xy + z)           - 2yz(x + y - z)

= 3xz(9xy)  +  3xz(z)  -2yz(x)   -2yz(y)   -2yz(-z)

=  27x²yz   +   3xz²    -2xy       -2y²z      +2yz²  

3 0
3 years ago
Brittany has 50 beads. 70% of the beads are gold. <br>How many beads are gold?
tankabanditka [31]

The number of beads that are gold is 35.

<h3>How many gold beads are there?</h3>

Percentage can be described as a fraction out of an amount that is usually expressed as a number out of hundred.

Number of gold beads = percentage of gold beads x total number of beads

70% x 50

0.7 x 50 = 35

To learn more about percentages, please check: brainly.com/question/25764815

#SPJ1

6 0
1 year ago
Repeat Question 2 and Question 3 for corresponding points B and BGH, C and CGH, and D and DGH. With your measurements displayed
Andrew [12]

Answer:

A vertex on polygon ABCD and its corresponding vertex on polygon AGHBGHCGHDGH are always equidistant from the line of reflection. Each of the four line segments (, for example) is perpendicular to and cut in half by the line of reflection, . This means that   is a perpendicular bisector of those line segments.

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Can someone help me find x
svlad2 [7]

Answer:

x = 3

Step-by-step explanation:

x + 15 = 9 x 2

x + 15 = 18

subtract 15 from both sides

x = 3

7 0
3 years ago
Se encontro que la arista de un cubo es de 30cm, con un posible error en la medicion de 0.1. Utilice diferenciales para estimar
Ierofanga [76]

Answer:

a) El error máximo posible es 270 centímetros cúbicos. El error relativo asociado al volumen es 0.01. El error asociado al volumen es 1 por ciento.

b) El máximo error posible del área superficial es 36 centímetros cuadrados. El máximo error posible del área superficial es 36 centímetros cuadrados. El porcentaje de error del área superficial es 0.667 por ciento.

Step-by-step explanation:

Recordemos que el volumen y el área superficial de un cubo quedan representados por las respectivas fórmulas:

V = l^{3} (Ec. 1)

A_{s} = 6\cdot l^{2} (Ec. 2)

Donde:

l - Longitud de la arista, medida en centímetros.

A_{s} - Área superficial, medida en centrímetros cuadrados.

V - Volumen, medido en centímetros cúbicos.

a) El error máximo posible del volumen del cubo se estima por el siguiente diferencial:

\Delta V = \frac{\partial V}{\partial l}\cdot \Delta l (Ec. 3)

Donde:

\Delta V - Error máximo posible del volumen, medido en centímetros cúbicos.

\frac{\partial V}{\partial l} - Primera derivada parcial del volumen con respecto a la longitud de la arista, medida en centrímetros cuadrados.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de volumen es:

\frac{\partial V}{\partial l} = 3\cdot l^{2} (Ec. 4)

Ahora expandimos (Ec. 3):

\Delta V = 3\cdot l^{2}\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del volumen es:

\Delta V = 3\cdot (30\,cm)^{2}\cdot (0.1\,cm)

\Delta V = 270\,cm^{3}

El error máximo posible del volumen es 270 centímetros cúbicos.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{V} = \frac{\Delta V}{V} (Ec. 5)

El volumen del cubo es: (l = 30\,cm)

V = (30\,cm)^{3}

V = 27000\,cm^{3}

Ahora sustituimos (Ec. 5):

\epsilon_{V} = \frac{270\,cm^{3}}{27000\,cm^{3}}

\epsilon_{V} = 0.01

El error relativo asociado al volumen es 0.01.

Por último, encontramos el porcentaje de error asociado al volumen:

\%\epsilon_{V} = 0.01\times 100\,\%

\%\epsilon_{V} = 1\,\%

El error asociado al volumen es 1 por ciento.

b) El error máximo posible del área superficial del cubo se estima por el siguiente diferencial:

\Delta A_{s} = \frac{\partial A_{s}}{\partial l}\cdot \Delta l (Ec. 6)

Donde:

\Delta A_{s} - Error máximo posible del área superficial, medido en centímetros cuadrados.

\frac{\partial A_{s}}{\partial l} - Primera derivada parcial del área superficial con respecto a la longitud de la arista, medida en centrímetros.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de área superficial es:

\frac{\partial A_{s}}{\partial l} = 12\cdot l (Ec. 7)

Ahora expandimos (Ec. 6):

\Delta A_{s} = 12\cdot l\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del área superficial es:

\Delta A_{S} = 12\cdot (30\,cm)\cdot (0.1\,cm)

\Delta A_{S} = 36\,cm^{2}

El máximo error posible del área superficial es 36 centímetros cuadrados.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{A_{S}} = \frac{\Delta A_{S}}{A_{S}} (Ec. 8)

El área superficial del cubo es: (l = 30\,cm)

A_{S} = 6\cdot (30\,cm)^{2}

A_{S} = 5400\,cm^{2}

Ahora sustituimos (Ec. 8):

\epsilon_{A_{S}} = \frac{36\,cm^{2}}{5400\,cm^{2}}

\epsilon_{A_{S}} = 6.667\times 10^{-3}

El error relativo del área superficial es 6.667 × 10⁻³.

Por último, encontramos el porcentaje de error asociado al área superficial:

\%\epsilon_{A_{S}} = 6.667\times 10^{-3}\times 100\,\%

\%\epsilon_{A_{S}} = 0.667\,\%

El porcentaje de error del área superficial es 0.667 por ciento.

6 0
3 years ago
Other questions:
  • What equation best represents y, the number of hours mr Moore will be charged should be charged for renting x hours?
    5·2 answers
  • James answered 84% of the test questions correctly. He answered 21 questions correctly. How many questions were on the test?
    8·1 answer
  • A pyramid has a rectangular base with dimensions of 3 feet by 7 feet. The height of the rectangular pyramid is 6 feet. Water fil
    11·1 answer
  • A car has 15 gallons of gas in its tank. The car travels 35 miles per gallon of gas. How far can the car travel on 15 gallons of
    15·2 answers
  • Please help and dont get it wrong! thank you =)))
    6·1 answer
  • What is the answer to this
    12·1 answer
  • Two cups of flour make 23 batch of bread. How many cups of flour make 1 batch?
    6·1 answer
  • What is 3/8<br> as an equivalent fraction with the LCM as the denominator?
    13·1 answer
  • Find the product what is 9.874×7= ? ​
    15·2 answers
  • Find the missing measure (simular figures)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!