Answer:
F=523712 N
Explanation:
density=mass/volume
and shape is cubic so
volume=(4)^3
volume=64 m^3
mass=835*64
mass=53440 Kg
Hydrostatic force=53440*9.8=523712 N
Answer:
The radius r of the metal sphere.
Explanation:
From Gauss's law we know that for a spherical charge distribution with charge
, the electrical field at distance
from the center of the sphere is given by
What is important to notice here is that the radius of the sphere does not matter because any test charge sitting at distance
feels the force as if all the charge
were sitting at the center of the sphere.
This situation is analogous to the gravitational field. When calculating gravitational force due to a body like the sun or the earth, we take not of only the mass of the sun and the distance from it's center; the sun's radius does not matter because we assume all of its mass to be concentrated at the center.
I think it's 1.03412969 or 1.03
To solve this problem we will apply the concepts related to the conservation of momentum. This can be defined as the product between the mass and the velocity of each object, and by conservation it will be understood that the amount of the initial momentum is equal to the amount of the final momentum. By the law of conservation of momentum,

Here,
= Mass of Basketball
= Mass of Tennis ball
= Initial velocity of Basketball
= Initial Velocity of Tennis ball
= Final velocity of Basketball
= Final velocity of the tennis ball
Replacing,

Solving for the final velocity of the tennis ball

Therefore the velocity of the tennis ball after collision is 11 m/s