Answer:
Option B.
Step-by-step explanation:
If two lines are parallel then their slopes are always same.
Following this rule we can find the slope by the given pairs of coordinates of the options.
If the slope of the line is same as the slope of y axis then the line passing through these points will be parallel to the y axis.
Slope of y - axis = ∞
Option A). Slope = 
= 
= 
= 775
Therefore, line passing through points (3.2, 8.5) and (3.22, 24) is not parallel to y axis.
Option B). Slope of the line passing through
and
will be
= 
= ∞
Therefore, line passing though these points is parallel to the y axis.
Option C). Slope of the line passing through
and (7.2, 5.4)
= 
= 0
Therefore, slope of this line is not equal to the slope of y axis.
Option B. is the answer.
Answer:
<em><u>given </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>for </u></em><em><u>rectangular</u></em><em><u> </u></em><em><u>part:</u></em><em><u> length</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>i</u></em><em><u>n</u></em><em><u>,</u></em><em><u> breadth</u></em><em><u>=</u></em><em><u>8</u></em><em><u>i</u></em><em><u>n</u></em>
<em><u>for</u></em><em><u> </u></em><em><u>triangular</u></em><em><u> </u></em><em><u>part:</u></em><em><u>base=</u></em><em><u>8</u></em><em><u>i</u></em><em><u>n</u></em><em><u>,</u></em><em><u> </u></em><em><u>height=</u></em><em><u>3</u></em><em><u>i</u></em><em><u>n</u></em>
<em><u>area of the given fig:</u></em>
<em><u>area of the given fig:area of 2 triangles +area of rectangle </u></em>
<em><u>
</u></em>
<h2>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> </u></em><em><u>you</u></em><em><u><</u></em><em><u>3</u></em></h2>
<h3 />
Answer:
29
Step-by-step explanation:
at 9 on both sides to get m alone
-9+m=20
+9. +9
m= 29
Answer:
c
Step-by-step explanation:
Answer:
y-coordinate = 0
Step-by-step explanation:
Consider the below diagram attached with this question.
Section formula:
If a point divides a line segment in m:n whose end points are
and
, then the coordinates of that point are

From the below graph it is clear that the coordinates of end points are J(1,-10) and K(7,2). A point divides the line JK is 5:1.
Using section formula, the coordinates of that point are




Therefore, the y-coordinate of the point that divides the directed line segment from J to k into a ratio of 5:1 is 0.