Answer:
![g(x) = 8\cdot (x-3)^{2}-5](https://tex.z-dn.net/?f=g%28x%29%20%3D%208%5Ccdot%20%28x-3%29%5E%7B2%7D-5)
Step-by-step explanation:
Given that parent function represents a parabola, the standard form with a vertex at (h,k) is now described:
![y-k = C\cdot (x-h)^{2}](https://tex.z-dn.net/?f=y-k%20%3D%20C%5Ccdot%20%28x-h%29%5E%7B2%7D)
![y = C \cdot (x-h)^{2} + k](https://tex.z-dn.net/?f=y%20%3D%20C%20%5Ccdot%20%28x-h%29%5E%7B2%7D%20%2B%20k)
Where:
,
- Independent and dependent variables, dimensionless.
,
- Horizontal and vertical component of the vertex, dimensionless.
- Vertex factor, dimensionless. (If C > 0, then vertex is an absolute minimum, but if C < 0, there is an absolute maximum).
After reading the statement of the problem, the following conclusion are found:
1) New function must have an absolute minimum: ![C > 0](https://tex.z-dn.net/?f=C%20%3E%200)
2) Transformation to the right:
.
3) Transformation downwards: ![k < 0](https://tex.z-dn.net/?f=k%20%3C%200)
Hence, the right choice must be
.