<h2>
Answer</h2>
The expression is

<h2>
Explanation</h2>
Step by step conversion is as following;
1 USD = 1.38 AUD, or its reciprocal
Where,
1.38 recent currency rate
AUD = Australian dollar
USD = US dollar
So, by rearranging

Then

The answer is

explanation:
The fastest way to find the missing endpoint is to determine the distance from the known endpoint to the midpoint and then performing the same transformation on the midpoint. In this case, the x-coordinate moves from 4 to 2, or down by 2, so the new x-coordinate must be 2-2 = 0. The y-coordinate moves from 4 to -5, or down by 9, so the new y-coordinate must be -5-9 = -14.
An alternate solution would be to substitute (4,4) for (x1,y1) and (2,-5) for (x,y) into the midpoint formula:
x=(x1+x2)/2
y=(y1+y2)/2
Solving each equation for (x2,y2) yields the solution (0,-14).
please mark me as brainliest
Answer:
the correct answer is , 4(20+3)
Step-by-step explanation:
This is a compound interest problem, therefore s(t) should be in the form:

where:
t = time in years
s(t) = the value of your item after t years
a = the initial value of your item
r = rate
Therefore, we already know that a = 245$.
Now, we can calculate r:

![r = \sqrt[t]{ \frac{s}{a} }](https://tex.z-dn.net/?f=r%20%3D%20%20%5Csqrt%5Bt%5D%7B%20%5Cfrac%7Bs%7D%7Ba%7D%20%7D%20)
![r = \sqrt[5]{ \frac{560.50}{245} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B5%5D%7B%20%5Cfrac%7B560.50%7D%7B245%7D%20%7D%20)
= 1.18
Therefore, the correct answers are
a = 245 and
r = 1.18
The correct answer is C.
You can tell this by factoring the equation to get the zeros. To start, pull out the greatest common factor.
f(x) = x^4 + x^3 - 2x^2
Since each term has at least x^2, we can factor it out.
f(x) = x^2(x^2 + x - 2)
Now we can factor the inside by looking for factors of the constant, which is 2, that add up to the coefficient of x. 2 and -1 both add up to 1 and multiply to -2. So, we place these two numbers in parenthesis with an x.
f(x) = x^2(x + 2)(x - 1)
Now we can also separate the x^2 into 2 x's.
f(x) = (x)(x)(x + 2)(x - 1)
To find the zeros, we need to set them all equal to 0
x = 0
x = 0
x + 2 = 0
x = -2
x - 1 = 0
x = 1
Since there are two 0's, we know the graph just touches there. Since there are 1 of the other two numbers, we know that it crosses there.