15 percent is categorical data
Answer:

Step-by-step explanation:
cosine x²= cos x²
Rule
Given that,

![=\int ^1_0[\int^3_0(\int^9_{3y} \frac{6cos x^2}{5\sqrt z}dz)dy]dz](https://tex.z-dn.net/?f=%3D%5Cint%20%5E1_0%5B%5Cint%5E3_0%28%5Cint%5E9_%7B3y%7D%20%5Cfrac%7B6cos%20x%5E2%7D%7B5%5Csqrt%20z%7Ddz%29dy%5Ddz)
![=\int^1_0[\int^3_0([\frac{6cos x^2 \times \sqrt z}{5\times \frac{1}{2}}]^9_{3y})dy]dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cint%5E3_0%28%5B%5Cfrac%7B6cos%20x%5E2%20%5Ctimes%20%5Csqrt%20z%7D%7B5%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D%5D%5E9_%7B3y%7D%29dy%5Ddx)
![=\int^1_0[\int^3_0([\frac{12cos x^2 \times( \sqrt 9-\sqrt{3y})}{5}])dy]dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cint%5E3_0%28%5B%5Cfrac%7B12cos%20x%5E2%20%5Ctimes%28%20%5Csqrt%209-%5Csqrt%7B3y%7D%29%7D%7B5%7D%5D%29dy%5Ddx)
![=\int^1_0[\int^3_0([\frac{12cos x^2 \times( 3-\sqrt{3y})}{5}])dy]dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cint%5E3_0%28%5B%5Cfrac%7B12cos%20x%5E2%20%5Ctimes%28%203-%5Csqrt%7B3y%7D%29%7D%7B5%7D%5D%29dy%5Ddx)
![=\int^1_0[\frac{12cos x^2 \times( 3y-\frac{\sqrt{3}y^\frac{3}{2}}{\frac{3}{2}})}{5}]^3_0dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cfrac%7B12cos%20x%5E2%20%5Ctimes%28%203y-%5Cfrac%7B%5Csqrt%7B3%7Dy%5E%5Cfrac%7B3%7D%7B2%7D%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%7D%7B5%7D%5D%5E3_0dx)
![=\int^1_0[\frac{12cos x^2 \times( 3.3-\frac{2\sqrt{3}.3^\frac{3}{2}}{3})}{5}]^3_0dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cfrac%7B12cos%20x%5E2%20%5Ctimes%28%203.3-%5Cfrac%7B2%5Csqrt%7B3%7D.3%5E%5Cfrac%7B3%7D%7B2%7D%7D%7B3%7D%29%7D%7B5%7D%5D%5E3_0dx)
![=\int^1_0[\frac{12cos x^2 \times( 9-6)}{5}]dx](https://tex.z-dn.net/?f=%3D%5Cint%5E1_0%5B%5Cfrac%7B12cos%20x%5E2%20%5Ctimes%28%209-6%29%7D%7B5%7D%5Ddx)


![=\frac{18}{5}[(x+\frac{sin2x}{2})]^1_0](https://tex.z-dn.net/?f=%3D%5Cfrac%7B18%7D%7B5%7D%5B%28x%2B%5Cfrac%7Bsin2x%7D%7B2%7D%29%5D%5E1_0)

Because Puck is a mischievous fairy who pulls pranks on people for entertainment.
<span>Express log(2)64-log(2)4 as a single logarithm.
Simplify as possible.
Solution:
= log(2)[64/4]
= log(2)[16]
= 4
</span>