Answer:
Time take to deposit Ni is 259.02 sec.
Explanation:
Given:
Current
A
Faraday constant

Molar mass of Ni

Mass of Ni
g
First find the no. moles in Ni solution,
Moles of Ni 
mol
From the below reaction,
⇆ 
Above reaction shows "1 mol of
requires 2 mol of electron to form 1 mol of
"
So for finding charge flow in this reaction we write,

Charge flow
C
For finding time of reaction,

Where
charge flow


sec
Therefore, time take to deposit Ni is 259.02 sec.
<span>divide the 201g by the mol mass of the compound. Just add up the masses of the various element</span>
Answer:
A) 31.22
Explanation:
The reaction of sulfuric acid with NaOH is:
H₂SO₄ + 2 NaOH → Na₂SO₄ + 2H₂O
To solve this problem we need to determine the moles of acid that will react, and, using the chemical equation we can determine the moles of NaOH and the volume that a 0.2389M NaOH solution would require to neutralize it.
<em>Moles H₂SO₄ (Molar mass: 98.08g/mol):</em>
0.9368g * 39.04% = 0.3657g H₂SO₄ * (1mol / 98.08g) =
3.7289x10⁻³moles H₂SO₄
And moles of NaOH that you require to neutralize the acid are:
3.7289x10⁻³moles H₂SO₄ * (2 moles NaOH / 1 mole H₂SO₄) =
7.4578x10⁻³ moles NaOH
Using a 0.2389M NaOH solution:
7.4578x10⁻³ moles NaOH * (1L / 0.2389mol) = 0.03122L = 31.22mL
Right answer is:
<h3>A) 31.22
</h3>
Here is some different pics of a water table. I hope this is what you are looking for :). You can click the pictures to in large them.