Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
The correct answer should be that Potential energy increases, and kinetic energy increases, since they both increase as the temperature changes.
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
D. The electron-withdrawing fluorine atoms pull electron density from the oxygen in trifluoroacetate. The negative charge is more stabilized in trifluoroacetate by this effect.
Explanation:
The structures of trifluoroacetate and acetic acid are both shown in the image attached.
The trifluoroacetate anion (CF3CO2-), just like the acetate anion has in the middle, two oxygen atoms.
However, in the trifluoroacetate anion, there are also three electronegative fluorine atoms attached to the nearby carbon atom attached to the carbonyl, and these pull some electron density through the sigma bonding network away from the oxygen atoms, thereby spreading out the negative charge further. This effect, called the "inductive effect" stabilizes the anion formed,the trifouoroacetate anion is thus more stabilized than the acetate anion.
Hence, trifluoroacetic acid is a stronger acid than acetic acid, having a pKa of -0.18.