Answer:
1.8 × 10⁻⁴ mol M/s
Explanation:
Step 1: Write the balanced reaction
2 Br⁻ ⇒ Br₂
Step 2: Establish the appropriate molar ratio
The molar ratio of Br⁻ to Br₂ is 2:1.
Step 3: Calculate the rate of appearance of Br₂
The rate of disappearance of Br⁻ at some moment in time was determined to be 3.5 × 10⁻⁴ M/s. The rate of appearance of Br₂ is:
3.5 × 10⁻⁴ mol Br⁻/L.s × (1 mol Br₂/2 mol Br⁻) = 1.8 × 10⁻⁴ mol Br₂/L.s
Magnesium bromide= MgBr2
Potassium chloride= KCl
Answer:
exothermic reaction
Explanation:
If there is a drop in temperature, then energy was lost to the surroundings because temperature is the average measure of kinetic energy. An exothermic reaction would result in this lost of energy. An endothermic reaction would absorb energy and make the temperature rise.
<span> UV radiation are high energy radiations and they are mutation causing agents so
</span>Mutagen <span> best describes the relationship of solar UV radiation to the environment
so option A is correct
hope it helps</span>
Answer:
592 K or 319° C
Explanation:
From the statement of Charles law we know that the volume of a given mass of gas is directly proportional to its absolute temperature at constant pressure. Thus;
V1/T1= V2/T2
Initial volume V1 = 1.75 L
Initial temperature T1= 23.0 +273 = 296 K
Final volume V2= 3.50 L
Final temperature T2 = the unknown
T2= V2T1/V1= 3.50 × 296 / 1.75
T2 = 592 K or 319° C