First you minus 2y on both sides and you get: 5x=-2y+4. Then you minus 4 on both sides to get 5x-4=-2y which in turn is y (-2y) = mx (5x) + b (-4) : -2y=5x-4
Answer:
A≈1075.21
d Diameter
37
d
r
r
r
d
d
C
A
Using the formulas
A=
π
r
2
d=
2
r
Solving forA
A=
1
4
π
d
2
=
h1
4
π
37
2
≈
1075.21009
Step-by-step explanation:
Here is the formula for finding a partitioning point:
x=x1+k(x2-x1), y=y1+k(y2-y1)
k is the ratio of the segment from the beginning point to the partitioning : the whole segment. In this case, k=AP:AB=5/16
so x=1+(5/16)*(-2-1)=1/16
y=6+(5/16)(-3-6)=51/16
so the answer is (-1/16, 51/16)
Please double check my calculation by yourself.
refer to this website for the formula and how to find k:
"This ratio is called k, and is determined by writing the numerator over the sum of the numerator and the denominator of the original ratio."
https://cobbk12.blackboard.com/bbcswebdav/institution/eHigh%20School/Courses/CCVA%20CCGPS%20Coordina....
Answer:
Step-by-step explanation:
By definition of Laplace transform we have
L{f(t)} = ![L{{f(t)}}=\int_{0}^{\infty }e^{-st}f(t)dt\\\\Given\\f(t)=7t^{3}\\\\\therefore L[7t^{3}]=\int_{0}^{\infty }e^{-st}7t^{3}dt\\\\](https://tex.z-dn.net/?f=L%7B%7Bf%28t%29%7D%7D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Df%28t%29dt%5C%5C%5C%5CGiven%5C%5Cf%28t%29%3D7t%5E%7B3%7D%5C%5C%5C%5C%5Ctherefore%20L%5B7t%5E%7B3%7D%5D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%5C%5C%5C%5C)
Now to solve the integral on the right hand side we shall use Integration by parts Taking
as first function thus we have
![\int_{0}^{\infty }e^{-st}7t^{3}dt=7\int_{0}^{\infty }e^{-st}t^{3}dt\\\\= [t^3\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(3t^2)\int e^{-st}dt]dt\\\\=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%3D7%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Dt%5E%7B3%7Ddt%5C%5C%5C%5C%3D%20%5Bt%5E3%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%283t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C)
Again repeating the same procedure we get
![=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt= \frac{3}{s}[t^2\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t^2)\int e^{-st}dt]dt\\\\=\frac{3}{s}[0-\int_{0}^{\infty }\frac{2t^{1}}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{2}}[\int_{0}^{\infty }te^{-st}dt]\\\\](https://tex.z-dn.net/?f=%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%3D%20%5Cfrac%7B3%7D%7Bs%7D%5Bt%5E2%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%7D%7Bs%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B2t%5E%7B1%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Again repeating the same procedure we get
![\frac{3\times 2}{s^2}[\int_{0}^{\infty }te^{-st}dt]= \frac{3\times 2}{s^{2}}[t\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t)\int e^{-st}dt]dt\\\\=\frac{3\times 2}{s^2}[0-\int_{0}^{\infty }\frac{1}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{3}}[\int_{0}^{\infty }e^{-st}dt]\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%3D%20%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5Bt%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B1%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B3%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Now solving this integral we have
![\int_{0}^{\infty }e^{-st}dt=\frac{1}{-s}[\frac{1}{e^\infty }-\frac{1}{1}]\\\\\int_{0}^{\infty }e^{-st}dt=\frac{1}{s}](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7B-s%7D%5B%5Cfrac%7B1%7D%7Be%5E%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B1%7D%5D%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7Bs%7D)
Thus we have
![L[7t^{3}]=\frac{7\times 3\times 2}{s^4}](https://tex.z-dn.net/?f=L%5B7t%5E%7B3%7D%5D%3D%5Cfrac%7B7%5Ctimes%203%5Ctimes%202%7D%7Bs%5E4%7D)
where s is any complex parameter